Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Albert Lab / Publications
general_search_page-panel_pane_1 | views_panes

34 Publications

Showing 1-10 of 34 results
11/03/23 | Volitional activation of remote place representations with a hippocampal brain-machine interface.
Lai C, Tanaka S, Harris TD, Lee AK
Science. 2023 Nov 03;382(6670):566-573. doi: 10.1126/science.adh5206

The hippocampus is critical for recollecting and imagining experiences. This is believed to involve voluntarily drawing from hippocampal memory representations of people, events, and places, including maplike representations of familiar environments. However, whether representations in such "cognitive maps" can be volitionally accessed is unknown. We developed a brain-machine interface to test whether rats can do so by controlling their hippocampal activity in a flexible, goal-directed, and model-based manner. We found that rats can efficiently navigate or direct objects to arbitrary goal locations within a virtual reality arena solely by activating and sustaining appropriate hippocampal representations of remote places. This provides insight into the mechanisms underlying episodic memory recall, mental simulation and planning, and imagination and opens up possibilities for high-level neural prosthetics that use hippocampal representations.

View Publication Page
09/15/23 | Low-latency extracellular spike assignment for high-density electrodes at single-neuron resolution
Chongxi Lai , Dohoung Kim , Brian Lustig , Shinsuke Tanaka , Brian Barbarits , Lakshmi Narayan , Jennifer Colonell , Ole Paulsen , Albert K. Lee , Timothy D. Harris
bioRxiv. 2023 Sep 15:. doi: 10.1101/2023.09.14.557854

Real-time neural signal processing is essential for brain-machine interfaces and closed-loop neuronal perturbations. However, most existing applications sacrifice cell-specific identity and temporal spiking information for speed. We developed a hybrid hardware-software system that utilizes a Field Programmable Gate Array (FPGA) chip to acquire and process data in parallel, enabling individual spikes from many simultaneously recorded neurons to be assigned single-neuron identities with 1-millisecond latency. The FPGA assigns labels, validated with ground-truth data, by comparing multichannel spike waveforms from tetrode or silicon probe recordings to a spike-sorted model generated offline in software. This platform allowed us to rapidly inactivate a region in vivo based on spikes from an upstream neuron before these spikes could excite the downstream region. Furthermore, we could decode animal location within 3 ms using data from a population of individual hippocampal neurons. These results demonstrate our system’s suitability for a broad spectrum of research and clinical applications.

View Publication Page
04/10/23 | Mental navigation and telekinesis with a hippocampal map-based brain-machine interface
Chongxi Lai , Shinsuke Tanaka , Timothy D. Harris , Albert K. Lee
bioRxiv. 2023 Apr 10:. doi: 10.1101/2023.04.07.536077

The hippocampus is critical for recollecting and imagining experiences. This is believed to involve voluntarily drawing from hippocampal memory representations of people, events, and places, including the hippocampus’ map-like representations of familiar environments. However, whether the representations in such “cognitive maps” can be volitionally and selectively accessed is unknown. We developed a brain-machine interface to test if rats could control their hippocampal activity in a flexible, goal-directed, model-based manner. We show that rats can efficiently navigate or direct objects to arbitrary goal locations within a virtual reality arena solely by activating and sustaining appropriate hippocampal representations of remote places. This should provide insight into the mechanisms underlying episodic memory recall, mental simulation/planning, and imagination, and open up possibilities for high-level neural prosthetics utilizing hippocampal representations.

View Publication Page
01/18/23 | Functional specialization and structured representations for space and time in prefrontal cortex
Claudia Böhm , Albert K. Lee
bioRxiv. 2023 Jan 18:. doi: 10.1101/2023.01.16.524214

Individual neurons in prefrontal cortex – a key brain area involved in cognitive functions – are selective for variables such as space or time, as well as more cognitive aspects of tasks, such as learned categories. Many neurons exhibit mixed selectivity, that is, they show selectivity for multiple variables. A fundamental question is whether neurons are functionally specialized for particular variables and how selectivity for different variables intersects across the population. Here, we analyzed neural correlates of space and time in rats performing a navigational task with two behaviorally important categories – starts and goals. Using simultaneous recordings of many medial prefrontal cortex (mPFC) neurons during behavior, we found that population codes for elapsed time were invariant to different locations within categories, and subsets of neurons had functional preferences for time or space across categories. Thus, mPFC exhibits structured selectivity, which may facilitate complex behaviors by efficiently generating informative representations of multiple variables.

View Publication Page
01/01/23 | Hippocampal spatial representations exhibit a hyperbolic geometry that expands with experience.
Zhang H, Rich PD, Lee AK, Sharpee TO
Nature Neuroscience. 2023 Jan 01;26(1):131-139. doi: 10.1038/s41593-022-01212-4

Daily experience suggests that we perceive distances near us linearly. However, the actual geometry of spatial representation in the brain is unknown. Here we report that neurons in the CA1 region of rat hippocampus that mediate spatial perception represent space according to a non-linear hyperbolic geometry. This geometry uses an exponential scale and yields greater positional information than a linear scale. We found that the size of the representation matches the optimal predictions for the number of CA1 neurons. The representations also dynamically expanded proportional to the logarithm of time that the animal spent exploring the environment, in correspondence with the maximal mutual information that can be received. The dynamic changes tracked even small variations due to changes in the running speed of the animal. These results demonstrate how neural circuits achieve efficient representations using dynamic hyperbolic geometry.

View Publication Page
11/10/22 | Robotic Multi-Probe-Single-Actuator Inchworm Neural Microdrive
Smith R, Kolb I, Tanaka S, Lee A, Harris T, Barbic M
eLife. 2022 Nov 10:. doi: 10.7554/eLife.71876

Electrophysiology is one of the major experimental techniques used in neuroscience. The favorable spatial and temporal resolution as well as the increasingly larger site counts of brain recording electrodes contribute to the popularity and importance of electrophysiology in neuroscience. Such electrodes are typically mechanically placed in the brain to perform acute or chronic freely moving animal measurements. The micro positioners currently used for such tasks employ a single translator per independent probe being placed into the targeted brain region, leading to significant size and weight restrictions. To overcome this limitation, we have developed a miniature robotic multi-probe neural microdrive that utilizes novel phase-change-material-filled resistive heater micro-grippers. The microscopic dimensions, gentle gripping action, independent electronic actuation control, and high packing density of the grippers allow for micrometer-precision independent positioning of multiple arbitrarily shaped parallel neural electrodes with only a single piezo actuator in an inchworm motor configuration. This multi-probe-single-actuator design allows for significant size and weight reduction, as well as remote control and potential automation of the microdrive. We demonstrate accurate placement of multiple independent recording electrodes into the CA1 region of the rat hippocampus in vivo in acute and chronic settings. Thus, our robotic neural microdrive technology is applicable towards basic neuroscience and clinical studies, as well as other multi-probe or multi-sensor micro-positioning applications.

View Publication Page
04/16/21 | Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings.
Steinmetz NA, Aydın Ç, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O'Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O'Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD
Science. 2021 Apr 16;372(6539):. doi: 10.1126/science.abf4588

Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.

View Publication Page

The prefrontal cortex (PFC)'s functions are thought to include working memory, as its activity can reflect information that must be temporarily maintained to realize the current goal. We designed a flexible spatial working memory task that required rats to navigate - after distractions and a delay - to multiple possible goal locations from different starting points and via multiple routes. This made the current goal location the key variable to remember, instead of a particular direction or route to the goal. However, across a broad population of PFC neurons, we found no evidence of current-goal-specific memory in any previously reported form - that is differences in the rate, sequence, phase, or covariance of firing. This suggests that such patterns do not hold working memory in the PFC when information must be employed flexibly. Instead, the PFC grouped locations representing behaviorally equivalent task features together, consistent with a role in encoding long-term knowledge of task structure.

View Publication Page

The prefrontal cortex (PFC)'s functions are thought to include working memory, as its activity can reflect information that must be temporarily maintained to realize the current goal. We designed a flexible spatial working memory task that required rats to navigate - after distractions and a delay - to multiple possible goal locations from different starting points and via multiple routes. This made the current goal location the key variable to remember, instead of a particular direction or route to the goal. However, across a broad population of PFC neurons, we found no evidence of current-goal-specific memory in any previously reported form - that is differences in the rate, sequence, phase, or covariance of firing. This suggests that such patterns do not hold working memory in the PFC when information must be employed flexibly. Instead, the PFC grouped locations representing behaviorally equivalent task features together, consistent with a role in encoding long-term knowledge of task structure.

View Publication Page
12/07/20 | The claustrum.
Smith JB, Lee AK, Jackson J
Current Biology. 2020 Dec 07;30(23):R1401-R1406. doi: 10.1016/j.cub.2020.09.069

The claustrum is a brain region that has been investigated for over 200 years, yet its precise function remains unknown. In the final posthumously released article of Francis Crick, written with Christof Koch, the claustrum was suggested to be critically linked to consciousness. Though the claustrum remained relatively obscure throughout the last half century, it has enjoyed a renewed interest in the last 15 years since Crick and Koch's article. During this time, the claustrum, like many other brain regions, has been studied with the myriad of modern systems neuroscience tools that have been made available by the intersection of genetic and viral technologies. This has uncovered new information about its anatomical connectivity and physiological properties and begun to reveal aspects of its function. From these studies, one clear consensus has emerged which supports Crick and Koch's primary interest in the claustrum: the claustrum has widespread extensive connectivity with the entire cerebral cortex, suggesting a prominent role in 'higher order processes'.

View Publication Page