Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

5 Publications

Showing 1-5 of 5 results
Your Criteria:
    04/25/02 | Wiring optimization in cortical circuits.
    Chklovskii DB, Schikorski T, Stevens CF
    Neuron. 2002 Apr 25;34(3):341-7. doi: 10.1016/j.tins.2005.05.006

    Wiring a brain presents a formidable problem because neural circuits require an enormous number of fast and durable connections. We propose that evolution was likely to have optimized neural circuits to minimize conduction delays in axons, passive cable attenuation in dendrites, and the length of "wire" used to construct circuits, and to have maximized the density of synapses. Here we ask the question: "What fraction of the volume should be taken up by axons and dendrites (i.e., wire) when these variables are at their optimal values?" The biophysical properties of axons and dendrites dictate that wire should occupy 3/5 of the volume in an optimally wired gray matter. We have measured the fraction of the volume occupied by each cellular component and find that the volume of wire is close to the predicted optimal value.

    View Publication Page
    Pavlopoulos Lab
    04/16/02 | Developmental evolution: Hox proteins ring the changes.
    Pavlopoulos A, Averof M
    Current Biology. 2002 Apr 16;12(8):R291-3

    The evolution of body form is believed to involve changes in expression of developmental genes, largely through changes in cis-regulatory elements. Recent studies suggest that changes in the sequences of key developmental regulators, such as the Hox proteins, may also play an important role.

    View Publication Page
    Simpson Lab
    04/15/02 | Ectopic expression in the giant fiber system of Drosophila reveals distinct roles for roundabout (Robo), Robo2, and Robo3 in dendritic guidance and synaptic connectivity.
    Godenschwege TA, Simpson JH, Shan X, Bashaw GJ, Goodman CS, Murphey RK
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2002 Apr 15;22(8):3117-29. doi: 20026291

    The Roundabout (Robo) receptors have been intensively studied for their role in regulating axon guidance in the embryonic nervous system, whereas a role in dendritic guidance has not been explored. In the adult giant fiber system of Drosophila, we have revealed that ectopic Robo expression can regulate the growth and guidance of specific motor neuron dendrites, whereas Robo2 and Robo3 have no effect. We also show that the effect of Robo on dendritic guidance can be suppressed by Commissureless coexpression. Although we confirmed a role for all three Robo receptors in giant fiber axon guidance, the strong axon guidance alterations caused by overexpression of Robo2 or Robo3 have no effect on synaptic connectivity. In contrast, Robo overexpression in the giant fiber seems to directly interfere with synaptic function. We conclude that axon guidance, dendritic guidance, and synaptogenesis are separable processes and that the different Robo family members affect them distinctly.

    View Publication Page
    Sternson Lab
    04/11/02 | Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays.
    Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL
    Nature. 2002 Apr 11;416(6881):653-7. doi: 10.1038/416653a

    Small molecules that alter protein function provide a means to modulate biological networks with temporal resolution. Here we demonstrate a potentially general and scalable method of identifying such molecules by application to a particular protein, Ure2p, which represses the transcription factors Gln3p and Nil1p. By probing a high-density microarray of small molecules generated by diversity-oriented synthesis with fluorescently labelled Ure2p, we performed 3,780 protein-binding assays in parallel and identified several compounds that bind Ure2p. One compound, which we call uretupamine, specifically activates a glucose-sensitive transcriptional pathway downstream of Ure2p. Whole-genome transcription profiling and chemical epistasis demonstrate the remarkable Ure2p specificity of uretupamine and its ability to modulate the glucose-sensitive subset of genes downstream of Ure2p. These results demonstrate that diversity-oriented synthesis and small-molecule microarrays can be used to identify small molecules that bind to a protein of interest, and that these small molecules can regulate specific functions of the protein.

    View Publication Page
    04/11/02 | Geometry and structural plasticity of synaptic connectivity.
    Stepanyants A, Hof PR, Chklovskii DB
    Neuron. 2002 Apr 11;34(2):275-88. doi: 10.1016/j.tins.2005.05.006

    Changes in synaptic connectivity patterns through the formation and elimination of dendritic spines may contribute to structural plasticity in the brain. We characterize this contribution quantitatively by estimating the number of different synaptic connectivity patterns attainable without major arbor remodeling. This number depends on the ratio of the synapses on a dendrite to the axons that pass within a spine length of that dendrite. We call this ratio the filling fraction and calculate it from geometrical analysis and anatomical data. The filling fraction is 0.26 in mouse neocortex, 0.22-0.34 in rat hippocampus. In the macaque visual cortex, the filling fraction increases by a factor of 1.6-1.8 from area V1 to areas V2, V4, and 7a. Since the filling fraction is much smaller than 1, spine remodeling can make a large contribution to structural plasticity.

    View Publication Page