Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4 Publications

Showing 1-4 of 4 results
Your Criteria:
    Magee Lab
    04/15/03 | Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons.
    Frick A, Magee J, Koester HJ, Migliore M, Johnston D
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2003 Apr 15;23(8):3243-50. doi: 10.1002/cbic.201000254

    Oblique dendrites of CA1 pyramidal neurons predominate in stratum radiatum and receive approximately 80% of the synaptic input from Schaffer collaterals. Despite this fact, most of our understanding of dendritic signal processing in these neurons comes from studies of the main apical dendrite. Using a combination of Ca2+ imaging and whole-cell recording techniques in rat hippocampal slices, we found that the properties of the oblique dendrites differ markedly from those of the main dendrites. These different properties tend to equalize the Ca2+ rise from single action potentials as they backpropagate into the oblique dendrites from the main trunk. Evidence suggests that this normalization of Ca2+ signals results from a higher density of a transient, A-type K+ current [I(K(A))] in the oblique versus the main dendrites. The higher density of I(K(A)) may have important implications for our understanding of synaptic integration and plasticity in these structures.

    View Publication Page

    The developmental mechanisms that regulate the relative size and shape of organs have remained obscure despite almost a century of interest in the problem and the fact that changes in relative size represent the dominant mode of evolutionary change. Here, I investigate how the Hox gene Ultrabithorax (Ubx) instructs the legs on the third thoracic segment of Drosophila melanogaster to develop with a different size and shape from the legs on the second thoracic segment. Through loss-of-function and gain-of-function experiments, I demonstrate that different segments of the leg, the femur and the first tarsal segment, and even different regions of the femur, regulate their size in response to Ubx expression through qualitatively different mechanisms. In some regions, Ubx acts autonomously to specify shape and size, whereas in other regions, Ubx influences size through nonautonomous mechanisms. Loss of Ubx autonomously reduces cell size in the T3 femur, but this reduction seems to be partially compensated by an increase in cell numbers, so that it is unclear what effect cell size and number directly have on femur size. Loss of Ubx has both autonomous and nonautonomous effects on cell number in different regions of the basitarsus, but again there is not a strong correlation between cell size or number and organ size. Total organ size appears to be regulated through mechanisms that operate at the level of the entire leg segment (femur or basitarsus) relatively independently of the behavior of individual subpopulations of cells within the segment.

    View Publication Page
    04/01/03 | Body-size control: how an insect knows it has grown enough.
    Stern D
    Curr Biol. 2003 Apr 1;13(7):R267-9

    Insulin signaling controls organ growth and final body size in insects. Recent results have begun to clarify how insulin signaling drives organ growth to match nutrient levels, but have not yet elucidated how insulin signaling controls final body size.

    View Publication Page
    Magee Lab
    04/01/03 | Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons.
    Smith MA, Ellis-Davies GC, Magee JC
    The Journal of Physiology. 2003 Apr 1;548(Pt 1):245-58. doi: 10.1002/cbic.201000254

    Schaffer collateral axons form excitatory synapses that are distributed across much of the dendritic arborization of hippocampal CA1 pyramidal neurons. Remarkably, AMPA-receptor-mediated miniature EPSP amplitudes at the soma are relatively independent of synapse location, despite widely different degrees of dendritic filtering. A progressive increase with distance in synaptic conductance is thought to produce this amplitude normalization. In this study we examined the mechanism(s) responsible for spatial scaling by making whole-cell recordings from the apical dendrites of CA1 pyramidal neurons. We found no evidence to suggest that there is any location dependence to the range of cleft glutamate concentrations found at Schaffer collateral synapses. Furthermore, we observed that release probability (Pr), paired-pulse facilitation and the size of the readily releasable vesicular pool are not dependent on synapse location. Thus, there do not appear to be any changes in the fundamental presynaptic properties of Schaffer collateral synapses that could account for distance-dependent scaling. On the other hand, two-photon uncaging of 4-methoxy-7-nitroindolinyl-caged L-glutamate onto isolated dendritic spines shows that the number of postsynaptic AMPA receptors per spine increases with distance from the soma. We conclude, therefore, that the main synaptic mechanism involved in the production of distance-dependent scaling of Schaffer collateral synapses is an elevated postsynaptic AMPA receptor density.

    View Publication Page