Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    Cui Lab
    09/01/13 | Three-dimensional live microscopy beyond the diffraction limit.
    Fiolka R
    Journal of Optics. 2013 Sep;15:094002. doi: 10.1088/2040-8978/15/9/094002

    In fluorescence microscopy it has become possible to fundamentally overcome the diffraction limited resolution in all three spatial dimensions. However, to have the most impact in biological sciences, new optical microscopy techniques need to be compatible with live cell imaging: image acquisition has to be fast enough to capture cellular dynamics at the new resolution limit while light exposure needs to be minimized to prevent photo-toxic effects. With increasing spatial resolution, these requirements become more difficult to meet, even more so when volumetric imaging is performed. In this review, techniques that have been successfully applied to three-dimensional, super-resolution live microscopy are presented and their relative strengths and weaknesses are discussed.

    View Publication Page
    Cui Lab
    01/01/13 | High speed phase distortion measurement and compensation for focusing in space and time.
    Fiolka R, Cui M
    Proceedings of SPIE. 2013;8589:85890V. doi: 10.1117/12.2001121

    Random scattering and aberrations severely limit the imaging depth in optical microscopy. We introduce a rapid, parallel wavefront compensation technique that efficiently compensates even highly complex phase distortions. Using coherence gated backscattered light as a feedback signal, we focus light deep inside highly scattering brain tissue. We demonstrate that the same wavefront optimization technique can also be used to compensate spectral phase distortions in ultrashort laser pulses using nonlinear iterative feedback. We can restore transform limited pulse durations at any selected target location and compensate for dispersion that has occurred in the optical train and within the sample.

    View Publication Page