Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

7 Publications

Showing 1-7 of 7 results
Your Criteria:
    10/14/13 | A neuron-based screening platform for optimizing genetically-encoded calcium indicators.
    Wardill TJ, Chen T, Schreiter ER, Hasseman JP, Tsegaye G, Fosque BF, Behnam R, Shields BC, Ramirez M, Kimmel BE, Kerr RA, Jayaraman V, Looger LL, Svoboda K, Kim DS
    PLoS One. 2013;8:e77728. doi: 10.1371/journal.pone.0077728

    Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude.

    View Publication Page
    10/01/13 | Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling.
    Ho JE, Chen W, Chen M, Larson MG, McCabe EL, Cheng S, Ghorbani A, Coglianese E, Emilsson V, Johnson AD, Walter S, Franceschini N, O'Donnell CJ, CARDIoGRAM Consortium , CHARGE Inflammation Working Group , Dehghan A, Lu C, Levy D, Newton-Cheh C, CHARGE Heart Failure Working Group , Lin H, Felix JF, Schreiter ER, Vasan RS, Januzzi JL, Lee RT, Wang TJ
    The Journal of Clinical Investigation. 2013 Oct;123(10):4208-18. doi: 10.1172/JCI67119

    The suppression of tumorigenicity 2/IL-33 (ST2/IL-33) pathway has been implicated in several immune and inflammatory diseases. ST2 is produced as 2 isoforms. The membrane-bound isoform (ST2L) induces an immune response when bound to its ligand, IL-33. The other isoform is a soluble protein (sST2) that is thought to be a decoy receptor for IL-33 signaling. Elevated sST2 levels in serum are associated with an increased risk for cardiovascular disease. We investigated the determinants of sST2 plasma concentrations in 2,991 Framingham Offspring Cohort participants. While clinical and environmental factors explained some variation in sST2 levels, much of the variation in sST2 production was driven by genetic factors. In a genome-wide association study (GWAS), multiple SNPs within IL1RL1 (the gene encoding ST2) demonstrated associations with sST2 concentrations. Five missense variants of IL1RL1 correlated with higher sST2 levels in the GWAS and mapped to the intracellular domain of ST2, which is absent in sST2. In a cell culture model, IL1RL1 missense variants increased sST2 expression by inducing IL-33 expression and enhancing IL-33 responsiveness (via ST2L). Our data suggest that genetic variation in IL1RL1 can result in increased levels of sST2 and alter immune and inflammatory signaling through the ST2/IL-33 pathway.

    View Publication Page
    10/01/13 | Structure of fully liganded Hb zeta(2)beta(s)(2) trapped in a tense conformation.
    Safo MK, Ko TP, Abdulmalik O, He ZN, Wang AH, Schreiter ER, Russell JE
    Acta Crystallographica Section D:Biological Crystallography. 2013 Oct;69(Pt 10):2061-71. doi: 10.1107/S0907444913019197

    A variant Hb zeta(2)beta(s)(2) that is formed from sickle hemoglobin (Hb S; alpha(2)beta(s)(2)) by exchanging adult alpha-globin with embryonic zeta-globin subunits shows promise as a therapeutic agent for sickle-cell disease (SCD). Hb zeta(2)beta(s)(2) inhibits the polymerization of deoxygenated Hb S in vitro and reverses characteristic features of SCD in vivo in mouse models of the disorder. When compared with either Hb S or with normal human adult Hb A (alpha(2)beta(2)), Hb zeta(2)beta(s)(2) exhibits atypical properties that include a high oxygen affinity, reduced cooperativity, a weak Bohr effect and blunted 2,3-diphosphoglycerate allostery. Here, the 1.95 angstrom resolution crystal structure of human Hb zeta(2)beta(s)(2) that was expressed in complex transgenic knockout mice and purified from their erythrocytes is presented. When fully liganded with carbon monoxide, Hb zeta(2)beta(s)(2) displays a central water cavity, a zeta 1-beta(s)2 (or zeta 2-beta(s)1) interface, intersubunit salt-bridge/hydrogen-bond interactions, C-terminal beta His146 salt-bridge interactions, and a beta-cleft, that are highly unusual for a relaxed hemoglobin structure and are more typical of a tense conformation. These quaternary tense-like features contrast with the tertiary relaxed-like conformations of the zeta 1-beta(s1) dimer and the CD and FG corners, as well as the overall structures of the heme cavities. This crystallographic study provides insights into the altered oxygen-transport properties of Hb zeta(2)beta(s)(2) and, moreover, decouples tertiary- and quaternary-structural events that are critical to Hb ligand binding and allosteric function.

    View Publication Page
    Jayaraman LabLooger LabSvoboda LabSchreiter LabGENIE
    07/18/13 | Ultrasensitive fluorescent proteins for imaging neuronal activity.
    Chen T, Wardill TJ, Sun Y, Pulvar SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS
    Nature. 2013 Jul 18;499:295-300. doi: 10.1038/nature12354

    Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5–40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.

    View Publication Page
    04/12/13 | Structure, activity, and substrate selectivity of the Orf6 thioesterase from Photobacterium profundum.
    Rodríguez-Guilbe M, Oyola-Robles D, Schreiter ER, Baerga-Ortiz A
    Journal of Biological Chemistry. 2013 Apr 12;288(15):10841-8. doi: 10.1074/jbc.M112.446765

    Thioesterase activity is typically required for the release of products from polyketide synthase enzymes, but no such enzyme has been characterized in deep-sea bacteria associated with the production of polyunsaturated fatty acids. In this work, we have expressed and purified the Orf6 thioesterase from Photobacterium profundum. Enzyme assays revealed that Orf6 has a higher specific activity toward long-chain fatty acyl-CoA substrates (palmitoyl-CoA and eicosapentaenoyl-CoA) than toward short-chain or aromatic acyl-CoA substrates. We determined a high resolution (1.05 Å) structure of Orf6 that reveals a hotdog hydrolase fold arranged as a dimer of dimers. The putative active site of this structure is occupied by additional electron density not accounted for by the protein sequence, consistent with the presence of an elongated compound. A second crystal structure (1.40 Å) was obtained from a crystal that was grown in the presence of Mg(2+), which reveals the presence of a binding site for divalent cations at a crystal contact. The Mg(2+)-bound structure shows localized conformational changes (root mean square deviation of 1.63 Å), and its active site is unoccupied, suggesting a mechanism to open the active site for substrate entry or product release. These findings reveal a new thioesterase enzyme with a preference for long-chain CoA substrates in a deep-sea bacterium whose potential range of applications includes bioremediation and the production of biofuels.

    View Publication Page
    03/04/13 | Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics.
    Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schüler C, Chen T, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kügler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL
    Frontiers in Molecular Neuroscience. 2013 Mar 4;6:2. doi: 10.3389/fnmol.2013.00002

    Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, "RCaMPs," engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca(2+)-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors in vitro and in vivo in Caenorhabditis elegans, Drosophila larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca(2+)]) and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation via channelrhodopsin-2 (ChR2) or a red-shifted variant, and activity imaging via RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in vivo in crawling C. elegans. We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca(2+) affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan, and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics.

    View Publication Page
    Looger LabSvoboda LabLeonardo LabSchreiter LabGENIE
    02/01/13 | An optimized fluorescent probe for visualizing glutamate neurotransmission.
    Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen T, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan W, Hires SA, Looger LL
    Nature Methods. 2013 Feb;10:162-70. doi: 10.1038/nmeth.2333

    We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.

    View Publication Page