Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:

    Jumping in planthopper and froghopper insects is propelled by a catapult-like mechanism requiring mechanical storage of energy and its quick release to accelerate the hind legs rapidly. To understand the functional biomechanics involved in these challenging movements, the internal skeleton, tendons and muscles involved were reconstructed in 3-D from confocal scans in unprecedented detail. Energy to power jumping was generated by slow contractions of hind leg depressor muscles and then stored by bending specialised elements of the thoracic skeleton that are composites of the rubbery protein resilin sandwiched between layers of harder cuticle with air-filled tunnels reducing mass. The images showed that the lever arm of the power-producing muscle changed in magnitude during jumping, but at all joint angles would cause depression, suggesting a mechanism by which the stored energy is released. This methodological approach illuminates how miniaturized components interact and function in complex and rapid movements of small animals.

    View Publication Page
    03/28/17 | Heuristic rules underlying dragonfly prey selection and interception.
    Lin H, Leonardo A
    Current Biology : CB. 2017 Mar 28;27(8):1124-37. doi: 10.1016/j.cub.2017.03.010

    Animals use rules to initiate behaviors. Such rules are often described as triggers that determine when behavior begins. However, although less explored, these selection rules are also an opportunity to establish sensorimotor constraints that influence how the behavior ends. These constraints may be particularly significant in influencing success in prey capture. Here we explore this in dragonfly prey interception. We found that in the moments leading up to takeoff, perched dragonflies employ a series of sensorimotor rules that determine the time of takeoff and increase the probability of successful capture. First, the dragonfly makes a head saccade followed by smooth pursuit movements to orient its direction-of-gaze at potential prey. Second, the dragonfly assesses whether the prey's angular size and speed co-vary within a privileged range. Finally, the dragonfly times the moment of its takeoff to a prediction of when the prey will cross the zenith. Each of these processes serves a purpose. The angular size-speed criteria biases interception flights to catchable prey, while the head movements and the predictive takeoff ensure flights begin with the prey visually fixated and directly overhead-the key parameters that underlie interception steering. Prey that do not elicit takeoff generally fail at least one of the criterion, and the loss of prey fixation or overhead positioning during flight is strongly correlated with terminated flights. Thus from an abundance of potential targets, the dragonfly selects a stereotyped set of takeoff conditions based on the prey and body states most likely to end in successful capture.

    View Publication Page