Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

192 Publications

Showing 51-60 of 192 results
Your Criteria:
    06/01/22 | Molecularly defined circuits for cardiovascular and cardiopulmonary control
    Veerakumar A, Yung AR, Liu Y, Krasnow MA
    Nature. 06/2022;606(7915):739 - 746. doi: 10.1038/s41586-022-04760-8

    The sympathetic and parasympathetic nervous systems regulate the activities of internal organs1, but the molecular and functional diversity of their constituent neurons and circuits remains largely unknown. Here we use retrograde neuronal tracing, single-cell RNA sequencing, optogenetics and physiological experiments to dissect the cardiac parasympathetic control circuit in mice. We show that cardiac-innervating neurons in the brainstem nucleus ambiguus (Amb) are comprised of two molecularly, anatomically and functionally distinct subtypes. The first, which we call ambiguus cardiovascular (ACV) neurons (approximately 35 neurons per Amb), define the classical cardiac parasympathetic circuit. They selectively innervate a subset of cardiac parasympathetic ganglion neurons and mediate the baroreceptor reflex, slowing heart rate and atrioventricular node conduction in response to increased blood pressure. The other, ambiguus cardiopulmonary (ACP) neurons (approximately 15 neurons per Amb) innervate cardiac ganglion neurons intermingled with and functionally indistinguishable from those innervated by ACV neurons. ACP neurons also innervate most or all lung parasympathetic ganglion neurons—clonal labelling shows that individual ACP neurons innervate both organs. ACP neurons mediate the dive reflex, the simultaneous bradycardia and bronchoconstriction that follows water immersion. Thus, parasympathetic control of the heart is organized into two parallel circuits, one that selectively controls cardiac function (ACV circuit) and another that coordinates cardiac and pulmonary function (ACP circuit). This new understanding of cardiac control has implications for treating cardiac and pulmonary diseases and for elucidating the control and coordination circuits of other organs.

    View Publication Page
    12/07/12 | Sexually Dimorphic BDNF Signaling Directs Sensory Innervation of the Mammary Gland
    Yin Liu , Michael Rutlin , Siyi Huang , Colleen A. Barrick , Fan Wang , Kevin R. Jones , Lino Tessarollo , David D. Ginty
    Science. 12/2012;338:1357-1360. doi: 10.1126/science.1228258

    Male and female mice differ in the neuronal patterns that serve the mammary glands. Yin Liu et al. (p. 1357) now describe how gonadal hormones drive development of distinct male and female sensory innervations. Although both male and female mammary glands develop their sensory innervation similarly in early embryogenesis, once the androgens take effect, the developmental trajectories diverge. By birth, the rich network of sensory neurons present in the female is absent in the male. Androgens cause a switch from expression of the full-length neurotrophin receptor TrkB to its truncated form, TrkB.T1, both of which are expressed on the neurons. In males, truncated TrkB.T1 sequesters brain-derived neurotrophic factor (BDNF) from further activity, whereas in females, full-length TrkB binds BDNF and supports neuronal development. Androgen-driven changes in receptor expression disrupt a neuronal signaling pathway and de-innervation. How neural circuits associated with sexually dimorphic organs are differentially assembled during development is unclear. Here, we report a sexually dimorphic pattern of mouse mammary gland sensory innervation and the mechanism of its formation. Brain-derived neurotrophic factor (BDNF), emanating from mammary mesenchyme and signaling through its receptor TrkB on sensory axons, is required for establishing mammary gland sensory innervation of both sexes at early developmental stages. Subsequently, in males, androgens promote mammary mesenchymal expression of a truncated form of TrkB, which prevents BDNF-TrkB signaling in sensory axons and leads to a rapid loss of mammary gland innervation independent of neuronal apoptosis. Thus, sex hormone regulation of a neurotrophic factor signal directs sexually dimorphic axonal growth and maintenance, resulting in generation of a sex-specific neural circuit.

    View Publication Page
    09/20/22 | A proliferative to invasive switch is mediated by srGAP1 downregulation through the activation of TGF-β2 signaling.
    Mondal C, Gacha-Garay MJ, Larkin KA, Adikes RC, Di Martino JS, Chien C, Fraser M, Eni-Aganga I, Agullo-Pascual E, Cialowicz K, Ozbek U, Naba A, Gaitas A, Fu T, Upadhyayula S, Betzig E, Matus DQ, Martin BL, Bravo-Cordero JJ
    Cell Reports. 2022 Sep 20;40(12):111358. doi: 10.1016/j.celrep.2022.111358

    Many breast cancer (BC) patients suffer from complications of metastatic disease. To form metastases, cancer cells must become migratory and coordinate both invasive and proliferative programs at distant organs. Here, we identify srGAP1 as a regulator of a proliferative-to-invasive switch in BC cells. High-resolution light-sheet microscopy demonstrates that BC cells can form actin-rich protrusions during extravasation. srGAP1 cells display a motile and invasive phenotype that facilitates their extravasation from blood vessels, as shown in zebrafish and mouse models, while attenuating tumor growth. Interestingly, a population of srGAP1 cells remain as solitary disseminated tumor cells in the lungs of mice bearing BC tumors. Overall, srGAP1 cells have increased Smad2 activation and TGF-β2 secretion, resulting in increased invasion and p27 levels to sustain quiescence. These findings identify srGAP1 as a mediator of a proliferative to invasive phenotypic switch in BC cells in vivo through a TGF-β2-mediated signaling axis.

    View Publication Page
    07/29/20 | Dense reconstruction of elongated cell lineages: overcoming suboptimum lineage encoding and sparse cell sampling
    Sugino K, Miyares RL, Espinosa-Medina I, Chen H, Potter CJ, Lee T
    bioRxiv. 07/2020:. doi: 10.1101/2020.07.27.223321

    Acquiring both lineage and cell-type information during brain development could elucidate transcriptional programs underling neuronal diversification. This is now feasible with single-cell RNA-seq combined with CRISPR-based lineage tracing, which generates genetic barcodes with cumulative CRISPR edits. This technique has not yet been optimized to deliver high-resolution lineage reconstruction of protracted lineages. Drosophila neuronal lineages are an ideal model to consider, as multiple lineages have been morphologically mapped at single-cell resolution. Here we find the parameter ranges required to encode a representative neuronal lineage emanating from 100 stem cell divisions. We derive the optimum editing rate to be inversely proportional to lineage depth, enabling encoding to persist across lineage progression. Further, we experimentally determine the editing rates of a Cas9-deaminase in cycling neural stem cells, finding near ideal rates to map elongated Drosophila neuronal lineages. Moreover, we propose and evaluate strategies to separate recurring cell-types for lineage reconstruction. Finally, we present a simple method to combine multiple experiments, which permits dense reconstruction of protracted cell lineages despite suboptimum lineage encoding and sparse cell sampling.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    10/24/17 | Dual origin of enteric neurons in vagal Schwann cell precursors and the sympathetic neural crest
    Isabel Espinosa-Medina , Ben Jevans , Franck Boismoreau , Zoubida Chettouh , Hideki Enomoto , Thomas Müller , Carmen Birchmeier , Alan J. Burns , Jean-François Brunet
    Proceedings of the National Academy of Sciences. 10/2017;114:11980-11985. doi: 10.1073/pnas.1710308114

    Most of the enteric nervous system derives from the “vagal” neural crest, lying at the level of somites 1–7, which invades the digestive tract rostro-caudally from the foregut to the hindgut. Little is known about the initial phase of this colonization, which brings enteric precursors into the foregut. Here we show that the “vagal crest” subsumes two populations of enteric precursors with contrasted origins, initial modes of migration, and destinations. Crest cells adjacent to somites 1 and 2 produce Schwann cell precursors that colonize the vagus nerve, which in turn guides them into the esophagus and stomach. Crest cells adjacent to somites 3–7 belong to the crest streams contributing to sympathetic chains: they migrate ventrally, seed the sympathetic chains, and colonize the entire digestive tract thence. Accordingly, enteric ganglia, like sympathetic ones, are atrophic when deprived of signaling through the tyrosine kinase receptor ErbB3, while half of the esophageal ganglia require, like parasympathetic ones, the nerve-associated form of the ErbB3 ligand, Neuregulin-1. These dependencies might bear relevance to Hirschsprung disease, with which alleles of Neuregulin-1 are associated.

    View Publication Page
    06/12/14 | Parasympathetic ganglia derive from Schwann cell precursors
    I. Espinosa-Medina , E. Outin , C. A. Picard , Z. Chettouh , S. Dymecki , G. G. Consalez , E. Coppola , J.-F. Brunet
    Science. 06/2014;345:87-90. doi: 10.1126/science.1253286

    The parasympathetic nervous system helps regulate the functions of many tissues and organs, including the salivary glands and the esophagus. To do so, it needs to reach throughout the body, connecting central systems to peripheral ones. Dyachuk et al. and Espinosa-Medina et al. explored how these connections are established in mice (see the Perspective by Kalcheim and Rohrer). Progenitor cells that travel along with the developing nerves can give rise to both myelinforming Schwann cells and to parasympathetic neurons. That means the interacting nerves do not have to find each other. Instead, the beginnings of the connections are laid down as the nervous system develops. Science, this issue p. 82, p. 87; see also p. 32 Parasympathetic neurons are born from Schwann cell precursors located in the nerves that carry preganglionic fibers. [Also see Perspective by Kalcheim and Rohrer] Neural crest cells migrate extensively and give rise to most of the peripheral nervous system, including sympathetic, parasympathetic, enteric, and dorsal root ganglia. We studied how parasympathetic ganglia form close to visceral organs and what their precursors are. We find that many cranial nerve-associated crest cells coexpress the pan-autonomic determinant Paired-like homeodomain 2b (Phox2b) together with markers of Schwann cell precursors. Some give rise to Schwann cells after down-regulation of PHOX2b. Others form parasympathetic ganglia after being guided to the site of ganglion formation by the nerves that carry preganglionic fibers, a parsimonious way of wiring the pathway. Thus, cranial Schwann cell precursors are the source of parasympathetic neurons during normal development.

    View Publication Page
    10/28/21 | TEMPO: A system to sequentially label and genetically manipulate vertebrate cell lineages
    Espinosa-Medina I, Feliciano D, Belmonte-Mateos C, Garcia-Marques J, Foster B, Miyares RL, Pujades C, Koyama M, Lee T
    bioRxiv. 10/2021:. doi: 10.1101/2021.10.27.466134

    During development, regulatory factors appear in a precise order to determine cell fates over time. To investigate complex tissue development, one should not just label cell lineages but further visualize and manipulate cells with temporal control. Current strategies for tracing vertebrate cell lineages lack genetic access to sequentially produced cells. Here we present TEMPO (Temporal Encoding and Manipulation in a Predefined Order), an imaging-readable genetic tool allowing differential labelling and manipulation of consecutive cell generations in vertebrates. TEMPO is based on CRISPR and powered by a cascade of gRNAs that drive orderly activation/inactivation of reporters/effectors. Using TEMPO to visualize zebrafish and mouse neurogenesis, we recapitulated birth-order-dependent neuronal fates. Temporally manipulating cell-cycle regulators in mouse cortex progenitors altered the proportion and distribution of neurons and glia, revealing the effects of temporal gene perturbation on serial cell fates. Thus, TEMPO enables sequential manipulation of molecular factors, crucial to study cell-type specification.One-Sentence Summary Gaining sequential genetic access to vertebrate cell lineages.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    02/28/18 | The "sacral parasympathetic": ontogeny and anatomy of a myth.
    Espinosa-Medina I, Saha O, Boismoreau F, Brunet J
    Clin Auton Res. 2018 02;28(1):13-21. doi: 10.1007/s10286-017-0478-7

    We recently defined genetic traits that distinguish sympathetic from parasympathetic neurons, both preganglionic and ganglionic (Espinosa-Medina et al., Science 354:893-897, 2016). By this set of criteria, we found that the sacral autonomic outflow is sympathetic, not parasympathetic as has been thought for more than a century. Proposing such a belated shift in perspective begs the question why the new criterion (cell types defined by their genetic make-up and dependencies) should be favored over the anatomical, physiological and pharmacological considerations of long ago that inspired the "parasympathetic" classification. After a brief reminder of the former, we expound the weaknesses of the latter and argue that the novel genetic definition helps integrating neglected anatomical and physiological observations and clearing the path for future research.

    View Publication Page
    11/18/16 | The sacral autonomic outflow is sympathetic
    I. Espinosa-Medina , O. Saha , F. Boismoreau , Z. Chettouh , F. Rossi , W. D. Richardson , J.-F. Brunet
    Science. 11/2016;354:893-897. doi: 10.1126/science.aah5454

    The autonomic nervous system regulates the function of internal organs such as the gut. The parasympathetic and sympathetic arms of this system tend to operate antagonistically. Espinosa-Medina et al. used anatomical and molecular analyses to reevaluate the assignment of neurons in the sacral autonomic nervous system (see the Perspective by Adameyko). Previously categorized as parasympathetic, these neurons are now identified as sympathetic. The results resolve a persistent confusion about how the two systems developed and open the avenue to more predictable outcomes in developing treatments targeted to the pelvic autonomic nervous system. Science, this issue p. 893; see also p. 833 Contrary to a century-old dogma, the pelvic nerves and ganglia do not belong to the parasympathetic nervous system but to the sympathetic one. A kinship between cranial and pelvic visceral nerves of vertebrates has been accepted for a century. Accordingly, sacral preganglionic neurons are considered parasympathetic, as are their targets in the pelvic ganglia that prominently control rectal, bladder, and genital functions. Here, we uncover 15 phenotypic and ontogenetic features that distinguish pre- and postganglionic neurons of the cranial parasympathetic outflow from those of the thoracolumbar sympathetic outflow in mice. By every single one, the sacral outflow is indistinguishable from the thoracolumbar outflow. Thus, the parasympathetic nervous system receives input from cranial nerves exclusively and the sympathetic nervous system from spinal nerves, thoracic to sacral inclusively. This simplified, bipartite architecture offers a new framework to understand pelvic neurophysiology as well as development and evolution of the autonomic nervous system.

    View Publication Page
    04/14/19 | Theoretical modeling on CRISPR-coded cell lineages: efficient encoding and optimal reconstruction
    Sugino K, Garcia-Marques J, Espinosa-Medina I, Lee T
    bioRxiv. 04/2019:. doi: 10.1101/538488

    Delineating cell lineages is a prerequisite for interrogating the genesis of cell types. CRISPR/Cas9 can edit genomic sequence during development which enables to trace cell lineages. Recent studies have demonstrated the feasibility of this idea. However, the optimality of the encoding or reconstruction processes has not been adequately addressed. Here, we surveyed a multitude of reconstruction algorithms and found hierarchical clustering, with a metric based on the number of shared Cas9 edits, delivers the best reconstruction. However, the trackable depth is ultimately limited by the number of available coding units that typically decrease exponentially across cell generations. To overcome this limit, we established two strategies that better sustain the coding capacity. One involves controlling target availability via use of parallel gRNA cascades, whereas the other strategy exploits adjustable Cas9/gRNA editing rates. In summary, we provide a theoretical basis in understanding, designing, and analyzing robust CRISPR barcodes for dense reconstruction of protracted cell lineages.

    View Publication Page