Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Pachitariu Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

13 Publications

Showing 1-10 of 13 results
08/19/17 | Community-based benchmarking improves spike inference from two-photon calcium imaging data.
Berens P, Freeman J, Deneux T, Chenkov N, McColgan T, Speiser A, Macke JH, Turaga SC, Mineault P, Rupprecht P, Gerhard S, Friedrich RW, Friedrich J, Paninski L, Pachitariu M, Harris KD, Bolte B, Machado TA, Ringach D, etal
bioRxiv. 2017 Aug 17:177956. doi: https://doi.org/10.1101/177956

In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike trains from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.

View Publication Page
07/20/17 | Suite2p: beyond 10,000 neurons with standard two-photon microscopy.
Pachitariu M, Stringer C, Dipoppa M, Schröder S, Rossi LF, Dalgleish H, Carandini M, Harris KD
bioRxiv. 2017 Jul 20:061507. doi: https://doi.org/10.1101/061507

Two-photon microscopy of calcium-dependent sensors has enabled unprecedented recordings from vast populations of neurons. While the sensors and microscopes have matured over several generations of development, computational methods to process the resulting movies remain inefficient and can give results that are hard to interpret. Here we introduce Suite2p: a fast, accurate and complete pipeline that registers raw movies, detects active cells, extracts their calcium traces and infers their spike times. Suite2p runs on standard workstations, operates faster than real time, and recovers ~2 times more cells than the previous state-of-the-art method. Its low computational load allows routine detection of ~10,000 cells simultaneously with standard two-photon resonant-scanning microscopes. Recordings at this scale promise to reveal the fine structure of activity in large populations of neurons or large populations of subcellular structures such as synaptic boutons.

View Publication Page
07/18/17 | Vision and locomotion shape the interactions between neuron types in mouse visual cortex.
Dipoppa M, Ranson A, Krumin M, Pachitariu M, Carandini M, Harris KD
bioRxiv. 2017 Jul 18:058396. doi: https://doi.org/10.1101/058396

In the mouse primary visual cortex (V1), sensory responses are shaped by behavioral factors such as locomotion. These factors are thought to control a disinhibitory circuit, whereby interneurons expressing vasoactive intestinal peptide (Vip) inhibit those expressing somatostatin (Sst), disinhibiting pyramidal cells (Pyr). We measured the effect of locomotion on these neurons and on interneurons expressing parvalbumin (Pvalb) in layer 2/3 of mouse V1, and found inconsistencies with the disinhibitory model. In the presence of large stimuli, locomotion increased Sst cell responses without suppressing Vip cells. In the presence of small stimuli, locomotion increased Vip cell responses without suppressing Sst cells. A circuit model could reproduce each cell type's activity from the measured activity of other cell types, but only if we allowed locomotion to increase feedforward synaptic weights while modulating recurrent weights. These results suggest that locomotion alters cortical function by changing effective synaptic connectivity, rather than only through disinhibition.

View Publication Page
06/27/17 | Robustness of spike deconvolution for calcium imaging of neural spiking.
Pachitariu M, Stringer C, Harris KD
bioRxiv. 2017 Jun 27:156786. doi: https://doi.org/10.1101/156786

Calcium imaging is a powerful method to record the activity of neural populations, but inferring spike times from calcium signals is a challenging problem. We compared multiple approaches using multiple datasets with ground truth electrophysiology, and found that simple non-negative deconvolution (NND) outperformed all other algorithms. We introduce a novel benchmark applicable to recordings without electrophysiological ground truth, based on the correlation of responses to two stimulus repeats, and used this to show that unconstrained NND also outperformed the other algorithms when run on 'zoomed out' datasets of ~10,000 cell recordings. Finally, we show that NND-based methods match the performance of a supervised method based on convolutional neural networks, while avoiding some of the biases of such methods, and at much faster running times. We therefore recommend that spikes be inferred from calcium traces using simple NND, due to its simplicity, efficiency and accuracy.

View Publication Page
01/09/17 | Visual motion computation in recurrent neural networks.
Pachitariu M, Sahani M
bioRxiv. 2017 Jan 09:099101. doi: https://doi.org/10.1101/099101

Populations of neurons in primary visual cortex (V1) transform direct thalamic inputs into a cortical representation which acquires new spatio-temporal properties. One of these properties, motion selectivity, has not been strongly tied to putative neural mechanisms, and its origins remain poorly understood. Here we propose that motion selectivity is acquired through the recurrent mechanisms of a network of strongly connected neurons. We first show that a bank of V1 spatiotemporal receptive fields can be generated accurately by a network which receives only instantaneous inputs from the retina. The temporal structure of the receptive fields is generated by the long timescale dynamics associated with the high magnitude eigenvalues of the recurrent connectivity matrix. When these eigenvalues have complex parts, they generate receptive fields that are inseparable in time and space, such as those tuned to motion direction. We also show that the recurrent connectivity patterns can be learnt directly from the statistics of natural movies using a temporally-asymmetric Hebbian learning rule. Probed with drifting grating stimuli and moving bars, neurons in the model show patterns of responses analogous to those of direction-selective simple cells in primary visual cortex. These computations are enabled by a specific pattern of recurrent connections, that can be tested by combining connectome reconstructions with functional recordings.

View Publication Page
12/07/16 | Inhibitory control of correlated intrinsic variability in cortical networks.
Stringer C, Pachitariu M, Steinmetz NA, Okun M, Bartho P, Harris KD, Sahani M, Lesica NA
eLife. 2016 Dec 07;5:. doi: 10.7554/eLife.19695

Cortical networks exhibit intrinsic dynamics that drive coordinated, large-scale fluctuations across neuronal populations and create noise correlations that impact sensory coding. To investigate the network-level mechanisms that underlie these dynamics, we developed novel computational techniques to fit a deterministic spiking network model directly to multi-neuron recordings from different rodent species, sensory modalities, and behavioral states. The model generated correlated variability without external noise and accurately reproduced the diverse activity patterns in our recordings. Analysis of the model parameters suggested that differences in noise correlations across recordings were due primarily to differences in the strength of feedback inhibition. Further analysis of our recordings confirmed that putative inhibitory neurons were indeed more active during desynchronized cortical states with weak noise correlations. Our results demonstrate that network models with intrinsically-generated variability can accurately reproduce the activity patterns observed in multi-neuron recordings and suggest that inhibition modulates the interactions between intrinsic dynamics and sensory inputs to control the strength of noise correlations.

View Publication Page
12/05/16 | Fast and accurate spike sorting of high-channel count probes with KiloSort.
Pachitariu M, Steinmetz NA, Kadir SN, Carandini M, Harris KD
Neural Information Processing Systems (NIPS 2016). 2016 Dec 05:

New silicon technology is enabling large-scale electrophysiological recordings in vivo from hundreds to thousands of channels. Interpreting these recordings requires scalable and accurate automated methods for spike sorting, which should minimize the time required for manual curation of the results. Here we introduce KiloSort, a new integrated spike sorting framework that uses template matching both during spike detection and during spike clustering. KiloSort models the electrical voltage as a sum of template waveforms triggered on the spike times, which allows overlapping spikes to be identified and resolved. Unlike previous algorithms that compress the data with PCA, KiloSort operates on the raw data which allows it to construct a more accurate model of the waveforms. Processing times are faster than in previous algorithms thanks to batch-based optimization on GPUs. We compare KiloSort to an established algorithm and show favorable performance, at much reduced processing times. A novel post-clustering merging step based on the continuity of the templates further reduced substantially the number of manual operations required on this data, for the neurons with near-zero error rates, paving the way for fully automated spike sorting of multichannel electrode recordings.

View Publication Page
06/17/15 | Learning enhances sensory and multiple non-sensory representations in primary visual cortex.
Poort J, Khan AG, Pachitariu M, Nemri A, Orsolic I, Krupic J, Bauza M, Sahani M, Keller GB, Mrsic-Flogel TD, Hofer SB
Neuron. 2015 Jun 17;86(6):1478-90. doi: 10.1016/j.neuron.2015.05.037

We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli.

View Publication Page
02/04/15 | State-dependent population coding in primary auditory cortex.
Pachitariu M, Lyamzin DR, Sahani M, Lesica NA
The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2015 Feb 04;35(5):2058-73. doi: 10.1523/JNEUROSCI.3318-14.2015

Sensory function is mediated by interactions between external stimuli and intrinsic cortical dynamics that are evident in the modulation of evoked responses by cortical state. A number of recent studies across different modalities have demonstrated that the patterns of activity in neuronal populations can vary strongly between synchronized and desynchronized cortical states, i.e., in the presence or absence of intrinsically generated up and down states. Here we investigated the impact of cortical state on the population coding of tones and speech in the primary auditory cortex (A1) of gerbils, and found that responses were qualitatively different in synchronized and desynchronized cortical states. Activity in synchronized A1 was only weakly modulated by sensory input, and the spike patterns evoked by tones and speech were unreliable and constrained to a small range of patterns. In contrast, responses to tones and speech in desynchronized A1 were temporally precise and reliable across trials, and different speech tokens evoked diverse spike patterns with extremely weak noise correlations, allowing responses to be decoded with nearly perfect accuracy. Restricting the analysis of synchronized A1 to activity within up states yielded similar results, suggesting that up states are not equivalent to brief periods of desynchronization. These findings demonstrate that the representational capacity of A1 depends strongly on cortical state, and suggest that cortical state should be considered as an explicit variable in all studies of sensory processing.

View Publication Page
12/05/13 | Extracting regions of interest from biological images with convolutional sparse block coding.
Pachitariu M, Packer AM, Pettit N, Dalgleish H, Häusser M, Sahani M
Neural Information Processing Systems (NIPS 2013). 2013 Dec 05:

Biological tissue is often composed of cells with similar morphologies replicated throughout large volumes and many biological applications rely on the accurate identification of these cells and their locations from image data. Here we develop a generative model that captures the regularities present in images composed of repeating elements of a few different types. Formally, the model can be described as convolutional sparse block coding. For inference we use a variant of convolutional matching pursuit adapted to block-based representations. We extend the K-SVD learning algorithm to subspaces by retaining several principal vectors from the SVD decomposition instead of just one. Good models with little cross-talk between subspaces can be obtained by learning the blocks incrementally. We perform extensive experiments on simulated images and the inference algorithm consistently recovers a large proportion of the cells with a small number of false positives. We fit the convolutional model to noisy GCaMP6 two-photon images of spiking neurons and to Nissl-stained slices of cortical tissue and show that it recovers cell body locations without supervision. The flexibility of the block-based representation is reflected in the variability of the recovered cell shapes.

View Publication Page