Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Pachitariu Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3 Publications

Showing 1-3 of 3 results
Your Criteria:
    12/05/13 | Extracting regions of interest from biological images with convolutional sparse block coding.
    Pachitariu M, Packer AM, Pettit N, Dalgleish H, Häusser M, Sahani M
    Neural Information Processing Systems (NIPS 2013). 2013 Dec 05:

    Biological tissue is often composed of cells with similar morphologies replicated throughout large volumes and many biological applications rely on the accurate identification of these cells and their locations from image data. Here we develop a generative model that captures the regularities present in images composed of repeating elements of a few different types. Formally, the model can be described as convolutional sparse block coding. For inference we use a variant of convolutional matching pursuit adapted to block-based representations. We extend the K-SVD learning algorithm to subspaces by retaining several principal vectors from the SVD decomposition instead of just one. Good models with little cross-talk between subspaces can be obtained by learning the blocks incrementally. We perform extensive experiments on simulated images and the inference algorithm consistently recovers a large proportion of the cells with a small number of false positives. We fit the convolutional model to noisy GCaMP6 two-photon images of spiking neurons and to Nissl-stained slices of cortical tissue and show that it recovers cell body locations without supervision. The flexibility of the block-based representation is reflected in the variability of the recovered cell shapes.

    View Publication Page
    12/05/13 | Recurrent linear models of simultaneously-recorded neural populations.
    Pachitariu M, Petreska B, Sahani M
    Neural Information Processing Systems (NIPS 2013). 2013 Dec 05:

    Population neural recordings with long-range temporal structure are often best understood in terms of a shared underlying low-dimensional dynamical process. Advances in recording technology provide access to an ever larger fraction of the population, but the standard computational approaches available to identify the collective dynamics scale poorly with the size of the dataset. Here we describe a new, scalable approach to discovering the low-dimensional dynamics that underlie simultaneously recorded spike trains from a neural population. Our method is based on recurrent linear models (RLMs), and relates closely to timeseries models based on recurrent neural networks. We formulate RLMs for neural data by generalising the Kalman-filter-based likelihood calculation for latent linear dynamical systems (LDS) models to incorporate a generalised-linear observation process. We show that RLMs describe motor-cortical population data better than either directly-coupled generalised-linear models or latent linear dynamical system models with generalised-linear observations. We also introduce the cascaded linear model (CLM) to capture low-dimensional instantaneous correlations in neural populations. The CLM describes the cortical recordings better than either Ising or Gaussian models and, like the RLM, can be fit exactly and quickly. The CLM can also be seen as a generalization of a low-rank Gaussian model, in this case factor analysis. The computational tractability of the RLM and CLM allow both to scale to very high-dimensional neural data.

    View Publication Page
    01/23/13 | Regularization and nonlinearities for neural language models: when are they needed?
    Pachitariu M, Sahani M
    arXiv. 2013 Jan 23:arXiv:1301.5650

    Neural language models (LMs) based on recurrent neural networks (RNN) are some of the most successful word and character-level LMs. Why do they work so well, in particular better than linear neural LMs? Possible explanations are that RNNs have an implicitly better regularization or that RNNs have a higher capacity for storing patterns due to their nonlinearities or both. Here we argue for the first explanation in the limit of little training data and the second explanation for large amounts of text data. We show state-of-the-art performance on the popular and small Penn dataset when RNN LMs are regularized with random dropout. Nonetheless, we show even better performance from a simplified, much less expressive linear RNN model without off-diagonal entries in the recurrent matrix. We call this model an impulse-response LM (IRLM). Using random dropout, column normalization and annealed learning rates, IRLMs develop neurons that keep a memory of up to 50 words in the past and achieve a perplexity of 102.5 on the Penn dataset. On two large datasets however, the same regularization methods are unsuccessful for both models and the RNN's expressivity allows it to overtake the IRLM by 10 and 20 percent perplexity, respectively. Despite the perplexity gap, IRLMs still outperform RNNs on the Microsoft Research Sentence Completion (MRSC) task. We develop a slightly modified IRLM that separates long-context units (LCUs) from short-context units and show that the LCUs alone achieve a state-of-the-art performance on the MRSC task of 60.8%. Our analysis indicates that a fruitful direction of research for neural LMs lies in developing more accessible internal representations, and suggests an optimization regime of very high momentum terms for effectively training such models.

    View Publication Page