Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Pachitariu Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    12/07/16 | Inhibitory control of correlated intrinsic variability in cortical networks.
    Stringer C, Pachitariu M, Steinmetz NA, Okun M, Bartho P, Harris KD, Sahani M, Lesica NA
    eLife. 2016 Dec 07;5:. doi: 10.7554/eLife.19695

    Cortical networks exhibit intrinsic dynamics that drive coordinated, large-scale fluctuations across neuronal populations and create noise correlations that impact sensory coding. To investigate the network-level mechanisms that underlie these dynamics, we developed novel computational techniques to fit a deterministic spiking network model directly to multi-neuron recordings from different rodent species, sensory modalities, and behavioral states. The model generated correlated variability without external noise and accurately reproduced the diverse activity patterns in our recordings. Analysis of the model parameters suggested that differences in noise correlations across recordings were due primarily to differences in the strength of feedback inhibition. Further analysis of our recordings confirmed that putative inhibitory neurons were indeed more active during desynchronized cortical states with weak noise correlations. Our results demonstrate that network models with intrinsically-generated variability can accurately reproduce the activity patterns observed in multi-neuron recordings and suggest that inhibition modulates the interactions between intrinsic dynamics and sensory inputs to control the strength of noise correlations.

    View Publication Page
    12/05/16 | Fast and accurate spike sorting of high-channel count probes with KiloSort.
    Pachitariu M, Steinmetz NA, Kadir SN, Carandini M, Harris KD
    Neural Information Processing Systems (NIPS 2016). 2016 Dec 05:

    New silicon technology is enabling large-scale electrophysiological recordings in vivo from hundreds to thousands of channels. Interpreting these recordings requires scalable and accurate automated methods for spike sorting, which should minimize the time required for manual curation of the results. Here we introduce KiloSort, a new integrated spike sorting framework that uses template matching both during spike detection and during spike clustering. KiloSort models the electrical voltage as a sum of template waveforms triggered on the spike times, which allows overlapping spikes to be identified and resolved. Unlike previous algorithms that compress the data with PCA, KiloSort operates on the raw data which allows it to construct a more accurate model of the waveforms. Processing times are faster than in previous algorithms thanks to batch-based optimization on GPUs. We compare KiloSort to an established algorithm and show favorable performance, at much reduced processing times. A novel post-clustering merging step based on the continuity of the templates further reduced substantially the number of manual operations required on this data, for the neurons with near-zero error rates, paving the way for fully automated spike sorting of multichannel electrode recordings.

    View Publication Page