Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Pedram Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

12 Publications

Showing 11-12 of 12 results
Your Criteria:
    01/03/16 | Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2
    Hung V, Udeshi ND, Lam SS, Loh KH, Cox KJ, Pedram K, Carr SA, Ting AY
    Nature Protocols. Jan-03-2016;11(3):456 - 475. doi: 10.1038/nprot.2016.018

    This protocol describes a method to obtain spatially resolved proteomic maps of specific compartments within living mammalian cells. An engineered peroxidase, APEX2, is genetically targeted to a cellular region of interest. Upon the addition of hydrogen peroxide for 1 min to cells preloaded with a biotin-phenol substrate, APEX2 generates biotin-phenoxyl radicals that covalently tag proximal endogenous proteins. Cells are then lysed, and biotinylated proteins are enriched with streptavidin beads and identified by mass spectrometry. We describe the generation of an appropriate APEX2 fusion construct, proteomic sample preparation, and mass spectrometric data acquisition and analysis. A two-state stable isotope labeling by amino acids in cell culture (SILAC) protocol is used for proteomic mapping of membrane-enclosed cellular compartments from which APEX2-generated biotin-phenoxyl radicals cannot escape. For mapping of open cellular regions, we instead use a 'ratiometric' three-state SILAC protocol for high spatial specificity. Isotopic labeling of proteins takes 5–7 cell doublings. Generation of the biotinylated proteomic sample takes 1 d, acquiring the mass spectrometric data takes 2–5 d and analysis of the data to obtain the final proteomic list takes 1 week.

    View Publication Page
    08/14/12 | Pediatric epilepsy surgery: long-term 5-year seizure remission and medication use
    Hauptman JS, Pedram K, Sison CA, Sankar R, Salamon N, Vinters HV, Mathern GW
    Neurosurgery. Feb-08-2013;71(5):985 - 993. doi: 10.1227/NEU.0b013e31826cdd5a

    Background: It is unclear whether long-term seizure outcomes in children are similar to those in adult epilepsy surgery patients.

    Objective: To determine 5-year outcomes and antiepilepsy drug (AED) use in pediatric epilepsy surgery patients from a single institution.

    Methods: The cohort consisted of children younger than 18 years of age whose 5-year outcome data would have been available by 2010. Comparisons were made between patients with and without 5-year data (n = 338), patients with 5-year data for seizure outcome (n = 257), and seizure-free patients on and off AEDs (n = 137).

    Results: Five-year data were available from 76% of patients. More seizure-free patients with focal resections for hippocampal sclerosis and tumors lacked 5-year data compared with other cases. Of those with 5-year data, 53% were continuously seizure free, 18% had late seizure recurrence, 3% became seizure free after initial failure, and 25% were never seizure free. Patients were more likely to be continuously seizure free if their surgery was performed during the period 2001 to 2005 (68%) compared with surgery performed from 1996 to 2000 (61%), 1991 to 1995 (36%), and 1986 to 1990 (46%). More patients had 1 or fewer seizures per month in the late seizure recurrence (47%) compared with the not seizure-free group (20%). Four late deaths occurred in the not seizure-free group compared with 1 in the seizure-free group. Of patients who were continuously seizure free, 55% were not taking AEDs, and more cortical dysplasia patients (74%) had stopped taking AEDs compared with hemimegalencephaly patients (18%).

    Conclusion: In children, 5-year outcomes improved over 20 years of clinical experience. Our results are similar to those of adult epilepsy surgery patients despite mostly extratemporal and hemispheric operations for diverse developmental etiologies.

    View Publication Page