Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Reiser Lab / Publications
general_search_page-panel_pane_1 | views_panes

42 Publications

Showing 1-10 of 42 results
Your Criteria:
    03/14/24 | Whole-body simulation of realistic fruit fly locomotion with deep reinforcement learning
    Roman Vaxenburg , Igor Siwanowicz , Josh Merel , Alice A Robie , Carmen Morrow , Guido Novati , Zinovia Stefanidi , Gwyneth M Card , Michael B Reiser , Matthew M Botvinick , Kristin M Branson , Yuval Tassa , Srinivas C Turaga
    bioRxiv. 2024 Mar 14:. doi: 10.1101/2024.03.11.584515

    The body of an animal determines how the nervous system produces behavior. Therefore, detailed modeling of the neural control of sensorimotor behavior requires a detailed model of the body. Here we contribute an anatomically-detailed biomechanical whole-body model of the fruit fly Drosophila melanogaster in the MuJoCo physics engine. Our model is general-purpose, enabling the simulation of diverse fly behaviors, both on land and in the air. We demonstrate the generality of our model by simulating realistic locomotion, both flight and walking. To support these behaviors, we have extended MuJoCo with phenomenological models of fluid forces and adhesion forces. Through data-driven end-to-end reinforcement learning, we demonstrate that these advances enable the training of neural network controllers capable of realistic locomotion along complex trajectories based on high-level steering control signals. With a visually guided flight task, we demonstrate a neural controller that can use the vision sensors of the body model to control and steer flight. Our project is an open-source platform for modeling neural control of sensorimotor behavior in an embodied context.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    01/05/24 | Homeodomain proteins hierarchically specify neuronal diversity and synaptic connectivity
    Chundi Xu , Tyler B. Ramos , Ed M. Rogers , Michael B. Reiser , Chris Q. Doe
    eLife. 2024 Jan 05:. doi: 10.7554/eLife.90133

    The brain generates diverse neuron types which express unique homeodomain transcription factors (TFs) and assemble into precise neural circuits. Yet a mechanistic framework is lacking for how homeodomain TFs specify both neuronal fate and synaptic connectivity. We use Drosophila lamina neurons (L1-L5) to show the homeodomain TF Brain-specific homeobox (Bsh) is initiated in lamina precursor cells (LPCs) where it specifies L4/L5 fate and suppresses homeodomain TF Zfh1 to prevent L1/L3 fate. Subsequently, Bsh activates the homeodomain TF Apterous (Ap) in L4 in a feedforward loop to express the synapse recognition molecule DIP-β, in part by Bsh direct binding a DIP-β intron. Thus, homeodomain TFs function hierarchically: primary homeodomain TF (Bsh) first specifies neuronal fate, and subsequently acts with secondary homeodomain TF (Ap) to activate DIP-β, thereby generating precise synaptic connectivity. We speculate that hierarchical homeodomain TF function may represent a general principle for coordinating neuronal fate specification and circuit assembly.

    View Publication Page
    11/24/23 | Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila.
    Longden KD, Rogers EM, Nern A, Dionne H, Reiser MB
    Nature Communications. 2023 Nov 24;14(1):7693. doi: 10.1038/s41467-023-43566-8

    Color and motion are used by many species to identify salient objects. They are processed largely independently, but color contributes to motion processing in humans, for example, enabling moving colored objects to be detected when their luminance matches the background. Here, we demonstrate an unexpected, additional contribution of color to motion vision in Drosophila. We show that behavioral ON-motion responses are more sensitive to UV than for OFF-motion, and we identify cellular pathways connecting UV-sensitive R7 photoreceptors to ON and OFF-motion-sensitive T4 and T5 cells, using neurogenetics and calcium imaging. Remarkably, this contribution of color circuitry to motion vision enhances the detection of approaching UV discs, but not green discs with the same chromatic contrast, and we show how this could generalize for systems with ON- and OFF-motion pathways. Our results provide a computational and circuit basis for how color enhances motion vision to favor the detection of saliently colored objects.

    View Publication Page
    11/24/23 | Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila.
    Longden KD, Rogers EM, Nern A, Dionne H, Reiser MB
    Nature Communications. 2023 Nov 24;14(1):7693. doi: 10.1038/s41467-023-43566-8

    Color and motion are used by many species to identify salient objects. They are processed largely independently, but color contributes to motion processing in humans, for example, enabling moving colored objects to be detected when their luminance matches the background. Here, we demonstrate an unexpected, additional contribution of color to motion vision in Drosophila. We show that behavioral ON-motion responses are more sensitive to UV than for OFF-motion, and we identify cellular pathways connecting UV-sensitive R7 photoreceptors to ON and OFF-motion-sensitive T4 and T5 cells, using neurogenetics and calcium imaging. Remarkably, this contribution of color circuitry to motion vision enhances the detection of approaching UV discs, but not green discs with the same chromatic contrast, and we show how this could generalize for systems with ON- and OFF-motion pathways. Our results provide a computational and circuit basis for how color enhances motion vision to favor the detection of saliently colored objects.

    View Publication Page
    10/17/23 | A comprehensive neuroanatomical survey of the Drosophila Lobula Plate Tangential Neurons with predictions for their optic flow sensitivity.
    Arthur Zhao , Aljoscha Nern , Sanna Koskela , Marisa Dreher , Mert Erginkaya , Connor W Laughland , Henrique DF Ludwig , Alex G Thomson , Judith Hoeller , Ruchi Parekh , Sandro Romani , Davi D Bock , Eugenia Chiappe , Michael B Reiser
    bioRxiv. 2023 Oct 17:. doi: 10.1101/2023.10.16.562634

    Flying insects exhibit remarkable navigational abilities controlled by their compact nervous systems. Optic flow, the pattern of changes in the visual scene induced by locomotion, is a crucial sensory cue for robust self-motion estimation, especially during rapid flight. Neurons that respond to specific, large-field optic flow patterns have been studied for decades, primarily in large flies, such as houseflies, blowflies, and hover flies. The best-known optic-flow sensitive neurons are the large tangential cells of the dipteran lobula plate, whose visual-motion responses, and to a lesser extent, their morphology, have been explored using single-neuron neurophysiology. Most of these studies have focused on the large, Horizontal and Vertical System neurons, yet the lobula plate houses a much larger set of 'optic-flow' sensitive neurons, many of which have been challenging to unambiguously identify or to reliably target for functional studies. Here we report the comprehensive reconstruction and identification of the Lobula Plate Tangential Neurons in an Electron Microscopy (EM) volume of a whole Drosophila brain. This catalog of 58 LPT neurons (per brain hemisphere) contains many neurons that are described here for the first time and provides a basis for systematic investigation of the circuitry linking self-motion to locomotion control. Leveraging computational anatomy methods, we estimated the visual motion receptive fields of these neurons and compared their tuning to the visual consequence of body rotations and translational movements. We also matched these neurons, in most cases on a one-for-one basis, to stochastically labeled cells in genetic driver lines, to the mirror-symmetric neurons in the same EM brain volume, and to neurons in an additional EM data set. Using cell matches across data sets, we analyzed the integration of optic flow patterns by neurons downstream of the LPTs and find that most central brain neurons establish sharper selectivity for global optic flow patterns than their input neurons. Furthermore, we found that self-motion information extracted from optic flow is processed in distinct regions of the central brain, pointing to diverse foci for the generation of visual behaviors.

    View Publication Page
    08/19/23 | A competitive disinhibitory network for robust optic flow processing in Drosophila
    Mert Erginkaya , Tomás Cruz , Margarida Brotas , Kathrin Steck , Aljoscha Nern , Filipa Torrão , Nélia Varela , Davi Bock , Michael Reiser , M Eugenia Chiappe
    bioRxiv. 2023 Aug 19:. doi: 10.1101/2023.08.06.552150

    Many animals rely on optic flow for navigation, using differences in eye image velocity to detect deviations from their intended direction of travel. However, asymmetries in image velocity between the eyes are often overshadowed by strong, symmetric translational optic flow during navigation. Yet, the brain efficiently extracts these asymmetries for course control. While optic flow sensitive-neurons have been found in many animal species, far less is known about the postsynaptic circuits that support such robust optic flow processing. In the fly Drosophila melanogaster, a group of neurons called the horizontal system (HS) are involved in course control during high-speed translation. To understand how HS cells facilitate robust optic flow processing, we identified central networks that connect to HS cells using full brain electron microscopy datasets. These networks comprise three layers: convergent inputs from different, optic flow-sensitive cells, a middle layer with reciprocal, and lateral inhibitory interactions among different interneuron classes, and divergent output projecting to both the ventral nerve cord (equivalent to the vertebrate spinal cord), and to deeper regions of the fly brain. By combining two-photon optical imaging to monitor free calcium dynamics, manipulating GABA receptors and modeling, we found that lateral disinhibition between brain hemispheres enhance the selectivity to rotational visual flow at the output layer of the network. Moreover, asymmetric manipulations of interneurons and their descending outputs induce drifts during high-speed walking, confirming their contribution to steering control. Together, these findings highlight the importance of competitive disinhibition as a critical circuit mechanism for robust processing of optic flow, which likely influences course control and heading perception, both critical functions supporting navigation.

    View Publication Page
    06/22/23 | Small-field visual projection neurons detect translational optic flow and support walking control
    Mathew D. Isaacson , Jessica L. M. Eliason , Aljoscha Nern , Edward M. Rogers , Gus K. Lott , Tanya Tabachnik , William J. Rowell , Austin W. Edwards , Wyatt L. Korff , Gerald M. Rubin , Kristin Branson , Michael B. Reiser
    bioRxiv. 2023 Jun 22:. doi: 10.1101/2023.06.21.546024

    Animals rely on visual motion for navigating the world, and research in flies has clarified how neural circuits extract information from moving visual scenes. However, the major pathways connecting these patterns of optic flow to behavior remain poorly understood. Using a high-throughput quantitative assay of visually guided behaviors and genetic neuronal silencing, we discovered a region in Drosophila’s protocerebrum critical for visual motion following. We used neuronal silencing, calcium imaging, and optogenetics to identify a single cell type, LPC1, that innervates this region, detects translational optic flow, and plays a key role in regulating forward walking. Moreover, the population of LPC1s can estimate the travelling direction, such as when gaze direction diverges from body heading. By linking specific cell types and their visual computations to specific behaviors, our findings establish a foundation for understanding how the nervous system uses vision to guide navigation.

    View Publication Page
    03/10/23 | Drosophila antennae are dispensable for gravity orientation
    Nikolay Kladt , Michael B. Reiser
    bioRxiv. 2023 Mar 10:. doi: 10.1101/2023.03.08.531317

    The nearly constant downward force of gravity has powerfully shaped the behaviors of many organisms [1]. Walking flies readily orient against gravity in a behavior termed negative gravitaxis. In Drosophila this behavior is studied by observing the position of flies in vials [24] or simple mazes [59]. These assays have been used to conduct forward-genetic screens [568] and as simple tests of locomotion deficits [1012]. Despite this long history of investigation, the sensory basis of gravitaxis is largely unknown [1]. Recent studies have implicated the antennae as a major mechanosensory input [34], but many details remain unclear. Fly orientation behavior is expected to depend on the direction and amplitude of the gravitational pull, but little is known about the sensitivity of flies to these features of the environment. Here we directly measure the gravity-dependent orientation behavior of flies walking on an adjustable tilted platform, that is inspired by previous insect studies [1316]. In this arena, flies can freely orient with respect to gravity. Our findings indicate that flies are exquisitely sensitive to the direction of gravity’s pull. Surprisingly, this orientation behavior does not require antennal mechanosensory input, suggesting that other sensory structures must be involved.

    View Publication Page
    Reiser LabFlyLightFly Functional ConnectomeFly Facility
    12/15/22 | Eye structure shapes neuron function in Drosophila motion vision
    Arthur Zhao , Eyal Gruntman , Aljoscha Nern , Nirmala A. Iyer , Edward M. Rogers , Sanna Koskela , Igor Siwanowicz , Marisa Dreher , Miriam A. Flynn , Connor W. Laughland , Henrique D.F. Ludwig , Alex G. Thomson , Cullen P. Moran , Bruck Gezahegn , Davi D. Bock , Michael B. Reiser
    bioRxiv. 2022 Dec 15:. doi: 10.1101/2022.12.14.520178

    Many animals rely on vision to navigate through their environment. The pattern of changes in the visual scene induced by self-motion is the optic flow1, which is first estimated in local patches by directionally selective (DS) neurons24. But how should the arrays of DS neurons, each responsive to motion in a preferred direction at a specific retinal position, be organized to support robust decoding of optic flow by downstream circuits? Understanding this global organization is challenging because it requires mapping fine, local features of neurons across the animal’s field of view3. In Drosophila, the asymmetric dendrites of the T4 and T5 DS neurons establish their preferred direction, making it possible to predict DS responses from anatomy4,5. Here we report that the preferred directions of fly DS neurons vary at different retinal positions and show that this spatial variation is established by the anatomy of the compound eye. To estimate the preferred directions across the visual field, we reconstructed hundreds of T4 neurons in a full brain EM volume6 and discovered unexpectedly stereotypical dendritic arborizations that are independent of location. We then used whole-head μCT scans to map the viewing directions of all compound eye facets and found a non-uniform sampling of visual space that explains the spatial variation in preferred directions. Our findings show that the organization of preferred directions in the fly is largely determined by the compound eye, exposing an intimate and unexpected connection between the peripheral structure of the eye, functional properties of neurons deep in the brain, and the control of body movements.

    View Publication Page
    08/22/22 | Neuronal circuits integrating visual motion information in Drosophila melanogaster.
    Shinomiya K, Nern A, Meinertzhagen IA, Plaza SM, Reiser MB
    Current Biology. 2022 Aug 22;32(16):3529-3544. doi: 10.1016/j.cub.2022.06.061

    The detection of visual motion enables sophisticated animal navigation, and studies on flies have provided profound insights into the cellular and circuit bases of this neural computation. The fly's directionally selective T4 and T5 neurons encode ON and OFF motion, respectively. Their axons terminate in one of the four retinotopic layers in the lobula plate, where each layer encodes one of the four directions of motion. Although the input circuitry of the directionally selective neurons has been studied in detail, the synaptic connectivity of circuits integrating T4/T5 motion signals is largely unknown. Here, we report a 3D electron microscopy reconstruction, wherein we comprehensively identified T4/T5's synaptic partners in the lobula plate, revealing a diverse set of new cell types and attributing new connectivity patterns to the known cell types. Our reconstruction explains how the ON- and OFF-motion pathways converge. T4 and T5 cells that project to the same layer connect to common synaptic partners and comprise a core motif together with bilayer interneurons, detailing the circuit basis for computing motion opponency. We discovered pathways that likely encode new directions of motion by integrating vertical and horizontal motion signals from upstream T4/T5 neurons. Finally, we identify substantial projections into the lobula, extending the known motion pathways and suggesting that directionally selective signals shape feature detection there. The circuits we describe enrich the anatomical basis for experimental and computations analyses of motion vision and bring us closer to understanding complete sensory-motor pathways.

    View Publication Page