Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Reiser Lab / Publications
general_search_page-panel_pane_1 | views_panes

46 Publications

Showing 41-46 of 46 results
05/01/10 | Drosophila fly straight by fixating objects in the face of expanding optic flow.
Reiser MB, Dickinson MH
The Journal of Experimental Biology. 2010 May;213(Pt 10):1771-81. doi: 10.1016/j.cub.2010.06.072

Flies, like all animals that depend on vision to navigate through the world, must integrate the optic flow created by self-motion with the images generated by prominent features in their environment. Although much is known about the responses of Drosophila melanogaster to rotating flow fields, their reactions to the more complex patterns of motion that occur as they translate through the world are not well understood. In the present study we explore the interactions between two visual reflexes in Drosophila: object fixation and expansion avoidance. As a fly flies forward, it encounters an expanding visual flow field. However, recent results have demonstrated that Drosophila strongly turn away from patterns of expansion. Given the strength of this reflex, it is difficult to explain how flies make forward progress through a visual landscape. This paradox is partially resolved by the finding reported here that when undergoing flight directed towards a conspicuous object, Drosophila will tolerate a level of expansion that would otherwise induce avoidance. This navigation strategy allows flies to fly straight when orienting towards prominent visual features.

View Publication Page
06/01/09 | The ethomics era?
Reiser M
Nature Methods. 2009 Jun;6:413-4. doi: 10.1016/j.cub.2010.06.072

Applying modern machine-vision techniques to the study of animal behavior, two groups developed systems that quantify many aspects of the complex social behaviors of Drosophila melanogaster. These software tools will enable high-throughput screens that seek to uncover the cellular and molecular underpinnings of behavior.

View Publication Page
01/30/08 | A modular display system for insect behavioral neuroscience.
Reiser MB, Dickinson MH
Journal of Neuroscience Methods. 2008 Jan 30;167(2):127-39. doi: 10.1016/j.cub.2010.06.072

Flying insects exhibit stunning behavioral repertoires that are largely mediated by the visual control of flight. For this reason, presenting a controlled visual environment to tethered insects has been and continues to be a powerful tool for studying the sensory control of complex behaviors. To create an easily controlled, scalable, and customizable visual stimulus, we have designed a modular system, based on panels composed of an 8 x 8 array of individual LEDs, that may be connected together to ’tile’ an experimental environment with controllable displays. The panels have been designed to be extremely bright, with the added flexibility of individual-pixel brightness control, allowing experimentation over a broad range of behaviorally relevant conditions. Patterns to be displayed may be designed using custom software, downloaded to a controller board, and displayed on the individually addressed panels via a rapid communication interface. The panels are controlled by a microprocessor-based display controller which, for most experiments, will not require a computer in the loop, greatly reducing the experimental infrastructure. This technology allows an experimenter to build and program a visual arena with a customized geometry in a matter of hours. To demonstrate the utility of this system, we present results from experiments with tethered Drosophila melanogaster: (1) in a cylindrical arena composed of 44 panels, used to test the contrast dependence of object orientation behavior, and (2) above a 30-panel floor display, used to examine the effects of ground motion on orientation during flight.

View Publication Page
12/01/07 | The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster.
Budick SA, Reiser MB, Dickinson MH
The Journal of Experimental Biology. 2007 Dec;210(Pt 23):4092-103. doi: 10.1016/j.cub.2010.06.072

It has long been known that many flying insects use visual cues to orient with respect to the wind and to control their groundspeed in the face of varying wind conditions. Much less explored has been the role of mechanosensory cues in orienting insects relative to the ambient air. Here we show that Drosophila melanogaster, magnetically tethered so as to be able to rotate about their yaw axis, are able to detect and orient into a wind, as would be experienced during forward flight. Further, this behavior is velocity dependent and is likely subserved, at least in part, by the Johnston’s organs, chordotonal organs in the antennae also involved in near-field sound detection. These wind-mediated responses may help to explain how flies are able to fly forward despite visual responses that might otherwise inhibit this behavior. Expanding visual stimuli, such as are encountered during forward flight, are the most potent aversive visual cues known for D. melanogaster flying in a tethered paradigm. Accordingly, tethered flies strongly orient towards a focus of contraction, a problematic situation for any animal attempting to fly forward. We show in this study that wind stimuli, transduced via mechanosensory means, can compensate for the aversion to visual expansion and thus may help to explain how these animals are indeed able to maintain forward flight.

View Publication Page
07/01/07 | Dynamic properties of large-field and small-field optomotor flight responses in Drosophila.
Duistermars BJ, Reiser MB, Zhu Y, Frye MA
Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology. 2007 Jul;193:787-99. doi: 10.1016/j.cub.2010.06.072

Optomotor flight control in houseflies shows bandwidth fractionation such that steering responses to an oscillating large-field rotating panorama peak at low frequency, whereas responses to small-field objects peak at high frequency. In fruit flies, steady-state large-field translation generates steering responses that are three times larger than large-field rotation. Here, we examine the optomotor steering reactions to dynamically oscillating visual stimuli consisting of large-field rotation, large-field expansion, and small-field motion. The results show that, like in larger flies, large-field optomotor steering responses peak at low frequency, whereas small-field responses persist under high frequency conditions. However, in fruit flies large-field expansion elicits higher magnitude and tighter phase-locked optomotor responses than rotation throughout the frequency spectrum, which may suggest a further segregation within the large-field pathway. An analysis of wing beat frequency and amplitude reveals that mechanical power output during flight varies according to the spatial organization and motion dynamics of the visual scene. These results suggest that, like in larger flies, the optomotor control system is organized into parallel large-field and small-field pathways, and extends previous analyses to quantify expansion-sensitivity for steering reflexes and flight power output across the frequency spectrum.

View Publication Page
10/15/03 | A test bed for insect-inspired robotic control.
Reiser MB, Dickinson MH
Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences. 2003 Oct 15;361(1811):2267-85. doi: 10.1016/j.cub.2010.06.072

Flying insects are remarkable examples of sophisticated sensory-motor control systems. Insects have solved the fundamental challenge facing the field of mobile robots: robust sensory-motor mapping. Control models based on insects can contribute much to the design of robotic control systems. We present our work on a preliminary robotic control system inspired by current behavioural and physiological models of the fruit fly, Drosophila melanogaster. We designed a five-degrees-of-freedom robotic system that serves as a novel simulation/mobile robot hybrid. This design has allowed us to implement a fly-inspired control system that uses visual and mechanosensory feedback. Our results suggest that a simple control scheme can yield surprisingly robust fly-like robotic behaviour.

View Publication Page