Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Romani Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

1 Publications

Showing 1-1 of 1 results
Your Criteria:
    03/01/11 | Intracellular dynamics of virtual place cells.
    Romani S, Sejnowski TJ, Tsodyks M
    Neural Computation. 2011 Mar;23(3):651-5. doi: 10.1162/NECO_a_00087

    The pattern of spikes recorded from place cells in the rodent hippocampus is strongly modulated by both the spatial location in the environment and the theta rhythm. The phases of the spikes in the theta cycle advance during movement through the place field. Recently intracellular recordings from hippocampal neurons (Harvey, Collman, Dombeck, & Tank, 2009 ) showed an increase in the amplitude of membrane potential oscillations inside the place field, which was interpreted as evidence that an intracellular mechanism caused phase precession. Here we show that an existing network model of the hippocampus (Tsodyks, Skaggs, Sejnowski, & McNaughton, 1996 ) can equally reproduce this and other aspects of the intracellular recordings, which suggests that new experiments are needed to distinguish the contributions of intracellular and network mechanisms to phase precession.

    View Publication Page