Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Sternson Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4 Publications

Showing 1-4 of 4 results
Your Criteria:
    Turaga LabSternson Lab
    10/16/20 | Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles.
    Xu S, Yang H, Menon V, Lemire AL, Wang L, Henry FE, Turaga SC, Sternson SM
    Science. 2020 Oct 16;370(6514):. doi: 10.1126/science.abb2494

    Brains encode behaviors using neurons amenable to systematic classification by gene expression. The contribution of molecular identity to neural coding is not understood because of the challenges involved with measuring neural dynamics and molecular information from the same cells. We developed CaRMA (calcium and RNA multiplexed activity) imaging based on recording in vivo single-neuron calcium dynamics followed by gene expression analysis. We simultaneously monitored activity in hundreds of neurons in mouse paraventricular hypothalamus (PVH). Combinations of cell-type marker genes had predictive power for neuronal responses across 11 behavioral states. The PVH uses combinatorial assemblies of molecularly defined neuron populations for grouped-ensemble coding of survival behaviors. The neuropeptide receptor neuropeptide Y receptor type 1 (Npy1r) amalgamated multiple cell types with similar responses. Our results show that molecularly defined neurons are important processing units for brain function.

    View Publication Page
    Sternson Lab
    09/17/20 | Exploring internal state-coding across the rodent brain.
    Sternson SM
    Current Opinion in Neurobiology. 2020 Sep 17;65:20-26. doi: 10.1016/j.conb.2020.08.009

    The influence of peripheral physiology on goal-directed behavior involves specialized interoceptive sensory neurons that signal internal state to the brain. Here, we review recent progress to examine the impact of these specialized cell types on neurons and circuits throughout the central nervous system. These new approaches are important for understanding how the needs of the body interact and guide goal-directed behaviors.

    View Publication Page
    Hermundstad LabSternson Lab
    09/17/20 | Hindbrain double-negative feedback mediates palatability-guided food and water consumption.
    Gong R, Xu S, Hermundstad A, Yu Y, Sternson SM
    Cell. 2020 Sep 17;182(6):1589-1605. doi: 10.1016/j.cell.2020.07.031

    Hunger and thirst have distinct goals but control similar ingestive behaviors, and little is known about neural processes that are shared between these behavioral states. We identify glutamatergic neurons in the peri-locus coeruleus (periLC neurons) as a polysynaptic convergence node from separate energy-sensitive and hydration-sensitive cell populations. We develop methods for stable hindbrain calcium imaging in free-moving mice, which show that periLC neurons are tuned to ingestive behaviors and respond similarly to food or water consumption. PeriLC neurons are scalably inhibited by palatability and homeostatic need during consumption. Inhibition of periLC neurons is rewarding and increases consumption by enhancing palatability and prolonging ingestion duration. These properties comprise a double-negative feedback relationship that sustains food or water consumption without affecting food- or water-seeking. PeriLC neurons are a hub between hunger and thirst that specifically controls motivation for food and water ingestion, which is a factor that contributes to hedonic overeating and obesity.

    View Publication Page
    Sternson Lab
    07/27/20 | Seeing the forest for the trees in obesity.
    Sternson SM
    Nature Metabolism. 2020 Jul 27:. doi: 10.1038/s42255-020-0259-9