Main Menu (Mobile)- Block

Main Menu - Block

Publications

janelia7_blocks-janelia7_fake_breadcrumb | block
Svoboda Lab / Publications
node_body | node_body
janelia7_blocks-janelia7_select_pub_list_header | block

Select Publications

View More Publications
publications_landing_pages | views
02/25/15 | A motor cortex circuit for motor planning and movement
Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K
Nature. 2015 Feb 25;519(7541):51-6. doi: 10.1038/nature14178

Activity in motor cortex predicts specific movements seconds before they occur, but how this preparatory activity relates to upcoming movements is obscure. We dissected the conversion of preparatory activity to movement within a structured motor cortex circuit. An anterior lateral region of the mouse cortex (a possible homologue of premotor cortex in primates) contains equal proportions of intermingled neurons predicting ipsi- or contralateral movements, yet unilateral inactivation of this cortical region during movement planning disrupts contralateral movements. Using cell-type-specific electrophysiology, cellular imaging and optogenetic perturbation, we show that layer 5 neurons projecting within the cortex have unbiased laterality. Activity with a contralateral population bias arises specifically in layer 5 neurons projecting to the brainstem, and only late during movement planning. These results reveal the transformation of distributed preparatory activity into movement commands within hierarchically organized cortical circuits.

View Publication Page
07/16/14 | Natural whisker-guided behavior by head-fixed mice in tactile virtual reality.
Sofroniew NJ, Cohen JD, Lee AK, Svoboda K
Journal of Neuroscience. 2014 Jul 16;34(29):9537-50. doi: 10.1523/JNEUROSCI.0712-14.2014

During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, head-fixed mouse behaviors are typically trained through extensive instrumental conditioning. Here we present a whisker-based, tactile virtual reality system for head-fixed mice running on a spherical treadmill. Head-fixed mice displayed natural movements, including running and rhythmic whisking at 16 Hz. Whisking was centered on a set point that changed in concert with running so that more protracted whisking was correlated with faster running. During turning, whiskers moved in an asymmetric manner, with more retracted whisker positions in the turn direction and protracted whisker movements on the other side. Under some conditions, whisker movements were phase-coupled to strides. We simulated a virtual reality tactile corridor, consisting of two moveable walls controlled in a closed-loop by running speed and direction. Mice used their whiskers to track the walls of the winding corridor without training. Whisker curvature changes, which cause forces in the sensory follicles at the base of the whiskers, were tightly coupled to distance from the walls. Our behavioral system allows for precise control of sensorimotor variables during natural tactile navigation.

View Publication Page
01/08/14 | Flow of cortical activity underlying a tactile decision in mice.
Guo ZV, Li N, Huber D, Ophir E, Gutnisky D, Ting JT, Feng G, Svoboda K
Neuron. 2014 Jan 8;81:179-94. doi: 10.1016/j.neuron.2013.10.020

Perceptual decisions involve distributed cortical activity. Does information flow sequentially from one cortical area to another, or do networks of interconnected areas contribute at the same time? Here we delineate when and how activity in specific areas drives a whisker-based decision in mice. A short-term memory component temporally separated tactile "sensation" and "action" (licking). Using optogenetic inhibition (spatial resolution, 2 mm; temporal resolution, 100 ms), we surveyed the neocortex for regions driving behavior during specific behavioral epochs. Barrel cortex was critical for sensation. During the short-term memory, unilateral inhibition of anterior lateral motor cortex biased responses to the ipsilateral side. Consistently, barrel cortex showed stimulus-specific activity during sensation, whereas motor cortex showed choice-specific preparatory activity and movement-related activity, consistent with roles in motor planning and movement. These results suggest serial information flow from sensory to motor areas during perceptual decision making.

View Publication Page
06/02/13 | Neural coding during active somatosensation revealed using illusory touch.
O’Connor DH, Hires A, Guo ZV, Li N, Yu J, Sun QQ, Huber D, Svoboda K
Nature Neuroscience. 2013 Jun 2;16(7):958-65. doi: 10.1038/nn.3419

Active sensation requires the convergence of external stimuli with representations of body movements. We used mouse behavior, electrophysiology and optogenetics to dissect the temporal interactions among whisker movement, neural activity and sensation of touch. We photostimulated layer 4 activity in single barrels in a closed loop with whisking. Mimicking touch-related neural activity caused illusory perception of an object at a particular location, but scrambling the timing of the spikes over one whisking cycle (tens of milliseconds) did not abolish the illusion, indicating that knowledge of instantaneous whisker position is unnecessary for discriminating object locations. The illusions were induced only during bouts of directed whisking, when mice expected touch, and in the relevant barrel. Reducing activity biased behavior, consistent with a spike count code for object detection at a particular location. Our results show that mice integrate coding of touch with movement over timescales of a whisking bout to produce perception of active touch.

View Publication Page
12/13/12 | Nonlinear dendritic integration of sensory and motor input during an active sensing task.
Xu Nlong, Harnett MT, Williams SR, Huber D, O’Connor DH, Svoboda K, Magee JC
Nature. 2012 Dec 13;492:247-51. doi: 10.1038/nature11601

Active dendrites provide neurons with powerful processing capabilities. However, little is known about the role of neuronal dendrites in behaviourally related circuit computations. Here we report that a novel global dendritic nonlinearity is involved in the integration of sensory and motor information within layer 5 pyramidal neurons during an active sensing behaviour. Layer 5 pyramidal neurons possess elaborate dendritic arborizations that receive functionally distinct inputs, each targeted to spatially separate regions. At the cellular level, coincident input from these segregated pathways initiates regenerative dendritic electrical events that produce bursts of action potential output and circuits featuring this powerful dendritic nonlinearity can implement computations based on input correlation. To examine this in vivo we recorded dendritic activity in layer 5 pyramidal neurons in the barrel cortex using two-photon calcium imaging in mice performing an object-localization task. Large-amplitude, global calcium signals were observed throughout the apical tuft dendrites when active touch occurred at particular object locations or whisker angles. Such global calcium signals are produced by dendritic plateau potentials that require both vibrissal sensory input and primary motor cortex activity. These data provide direct evidence of nonlinear dendritic processing of correlated sensory and motor information in the mammalian neocortex during active sensation.

View Publication Page
09/13/12 | Activity in motor-sensory projections reveals distributed coding in somatosensation.
Petreanu L, Gutnisky DA, Huber D, Xu Nlong, O’Connor DH, Tian L, Looger L, Svoboda K
Nature. 2012 Sep 13;489:299-303. doi: 10.1038/nature11321

Cortical-feedback projections to primary sensory areas terminate most heavily in layer 1 (L1) of the neocortex, where they make synapses with tuft dendrites of pyramidal neurons. L1 input is thought to provide ‘contextual’ information, but the signals transmitted by L1 feedback remain uncharacterized. In the rodent somatosensory system, the spatially diffuse feedback projection from vibrissal motor cortex (vM1) to vibrissal somatosensory cortex (vS1, also known as the barrel cortex) may allow whisker touch to be interpreted in the context of whisker position to compute object location. When mice palpate objects with their whiskers to localize object features, whisker touch excites vS1 and later vM1 in a somatotopic manner. Here we use axonal calcium imaging to track activity in vM1–>vS1 afferents in L1 of the barrel cortex while mice performed whisker-dependent object localization. Spatially intermingled individual axons represent whisker movements, touch and other behavioural features. In a subpopulation of axons, activity depends on object location and persists for seconds after touch. Neurons in the barrel cortex thus have information to integrate movements and touches of multiple whiskers over time, key components of object identification and navigation by active touch.

View Publication Page
04/26/12 | Multiple dynamic representations in the motor cortex during sensorimotor learning.
Huber D, Gutnisky DA, Peron S, O’Connor DH, Wiegert JS, Tian L, Oertner TG, Looger LL, Svoboda K
Nature. 2012 Apr 26;484(7395):473-8. doi: 10.1038/nature11039

The mechanisms linking sensation and action during learning are poorly understood. Layer 2/3 neurons in the motor cortex might participate in sensorimotor integration and learning; they receive input from sensory cortex and excite deep layer neurons, which control movement. Here we imaged activity in the same set of layer 2/3 neurons in the motor cortex over weeks, while mice learned to detect objects with their whiskers and report detection with licking. Spatially intermingled neurons represented sensory (touch) and motor behaviours (whisker movements and licking). With learning, the population-level representation of task-related licking strengthened. In trained mice, population-level representations were redundant and stable, despite dynamism of single-neuron representations. The activity of a subpopulation of neurons was consistent with touch driving licking behaviour. Our results suggest that ensembles of motor cortex neurons couple sensory input to multiple, related motor programs during learning.

View Publication Page
10/06/11 | Long-range neuronal circuits underlying the interaction between sensory and motor cortex.
Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K
Neuron. 2011 Oct 6;72:111-23. doi: 10.1016/j.neuron.2011.07.029

In the rodent vibrissal system, active sensation and sensorimotor integration are mediated in part by connections between barrel cortex and vibrissal motor cortex. Little is known about how these structures interact at the level of neurons. We used Channelrhodopsin-2 (ChR2) expression, combined with anterograde and retrograde labeling, to map connections between barrel cortex and pyramidal neurons in mouse motor cortex. Barrel cortex axons preferentially targeted upper layer (L2/3, L5A) neurons in motor cortex; input to neurons projecting back to barrel cortex was particularly strong. Barrel cortex input to deeper layers (L5B, L6) of motor cortex, including neurons projecting to the brainstem, was weak, despite pronounced geometric overlap of dendrites with axons from barrel cortex. Neurons in different layers received barrel cortex input within stereotyped dendritic domains. The cortico-cortical neurons in superficial layers of motor cortex thus couple motor and sensory signals and might mediate sensorimotor integration and motor learning.

View Publication Page
09/23/10 | Neural activity in barrel cortex underlying vibrissa-based object localization in mice.
O’Connor DH, Peron SP, Huber D, Svoboda K
Neuron. 2010 Sep 23;67(6):1048-61. doi: 10.1016/j.neuron.2010.08.026

Classical studies have related the spiking of selected neocortical neurons to behavior, but little is known about activity sampled from the entire neural population. We recorded from neurons selected independent of spiking, using cell-attached recordings and two-photon calcium imaging, in the barrel cortex of mice performing an object localization task. Spike rates varied across neurons, from silence to >60 Hz. Responses were diverse, with some neurons showing large increases in spike rate when whiskers contacted the object. Nearly half the neurons discriminated object location; a small fraction of neurons discriminated perfectly. More active neurons were more discriminative. Layer (L) 4 and L5 contained the highest fractions of discriminating neurons (\~{}63% and 79%, respectively), but a few L2/3 neurons were also highly discriminating. Approximately 13,000 spikes per activated barrel column were available to mice for decision making. Coding of object location in the barrel cortex is therefore highly redundant.

View Publication Page
02/03/10 | Vibrissa-based object localization in head-fixed mice.
O’Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, Svoboda K
The Journal of Neuroscience. 2010 Feb 3;30(5):1947-67. doi: 10.1523/JNEUROSCI.3762-09.2010

Linking activity in specific cell types with perception, cognition, and action, requires quantitative behavioral experiments in genetic model systems such as the mouse. In head-fixed primates, the combination of precise stimulus control, monitoring of motor output, and physiological recordings over large numbers of trials are the foundation on which many conceptually rich and quantitative studies have been built. Choice-based, quantitative behavioral paradigms for head-fixed mice have not been described previously. Here, we report a somatosensory absolute object localization task for head-fixed mice. Mice actively used their mystacial vibrissae (whiskers) to sense the location of a vertical pole presented to one side of the head and reported with licking whether the pole was in a target (go) or a distracter (no-go) location. Mice performed hundreds of trials with high performance (>90% correct) and localized to <0.95 mm (<6 degrees of azimuthal angle). Learning occurred over 1-2 weeks and was observed both within and across sessions. Mice could perform object localization with single whiskers. Silencing barrel cortex abolished performance to chance levels. We measured whisker movement and shape for thousands of trials. Mice moved their whiskers in a highly directed, asymmetric manner, focusing on the target location. Translation of the base of the whiskers along the face contributed substantially to whisker movements. Mice tended to maximize contact with the go (rewarded) stimulus while minimizing contact with the no-go stimulus. We conjecture that this may amplify differences in evoked neural activity between trial types.

View Publication Page
04/22/10 | Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice.
Komiyama T, Sato TR, O’Connor DH, Zhang YX, Huber D, Hooks BM, Gabitto M, Svoboda K
Nature. 2010 Apr 22;464(7292):1182-6. doi: 10.1038/nature08897

Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within approximately 150 mum) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.

View Publication Page
publications_landing_pages | views