Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Turaga Lab / Publications
general_search_page-panel_pane_1 | views_panes

46 Publications

Showing 11-20 of 46 results
10/24/19 | Importance Weighted Adversarial Variational Autoencoders for Spike Inference from Calcium Imaging Data
Daniel Jiwoong Im , Sridhama Prakhya , Jinyao Yan , Srinivas C. Turaga , Kristin Branson
CoRR. 10/2019;abs/1906.03214:

The Importance Weighted Auto Encoder (IWAE) objective has been shown to improve the training of generative models over the standard Variational Auto Encoder (VAE) objective. Here, we derive importance weighted extensions to Adversarial Variational Bayes (AVB) and Adversarial Autoencoder (AAE). These latent variable models use implicitly defined inference networks whose approximate posterior density qφ(z|x) cannot be directly evaluated, an essential ingredient for importance weighting. We show improved training and inference in latent variable models with our adversarially trained importance weighting method, and derive new theoretical connections between adversarial generative model training criteria and marginal likelihood based methods. We apply these methods to the important problem of inferring spiking neural activity from calcium imaging data, a challenging posterior inference problem in neuroscience, and show that posterior samples from the adversarial methods outperform factorized posteriors used in VAEs.

View Publication Page
10/04/20 | Learning Guided Electron Microscopy with Active Acquisition
Mi L, Wang H, Meirovitch Y, Schalek R, Turaga SC, Lichtman JW, Samuel AD, Shavit N, Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, Racoceanu D, Joskowicz L
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. 10/2020:

Single-beam scanning electron microscopes (SEM) are widely used to acquire massive datasets for biomedical study, material analysis, and fabrication inspection. Datasets are typically acquired with uniform acquisition: applying the electron beam with the same power and duration to all image pixels, even if there is great variety in the pixels' importance for eventual use. Many SEMs are now able to move the beam to any pixel in the field of view without delay, enabling them, in principle, to invest their time budget more effectively with non-uniform imaging.

View Publication Page
01/01/21 | Local Shape Descriptors for Neuron Segmentation
Sheridan A, Nguyen T, Deb D, Lee WA, Saalfeld S, Turaga S, Manor U, Funke J
bioRxiv. 2021/01:. doi: 10.1101/2021.01.18.427039

We present a simple, yet effective, auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of Local Shape Descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors are designed to capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction. On a large study comparing several existing methods across various specimen, imaging techniques, and resolutions, we find that auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinitybased segmentation methods to be on par with the current state of the art for neuron segmentation (Flood-Filling Networks, FFN), while being two orders of magnitudes more efficient—a critical requirement for the processing of future petabyte-sized datasets. Implementations of the new auxiliary learning task, network architectures, training, prediction, and evaluation code, as well as the datasets used in this study are publicly available as a benchmark for future method contributions.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
04/21/21 | Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit
Aitchison L, Russell L, Packer AM, Yan J, Castonguay P, Häusser M, Turaga SC, I. Guyon , U. V. Luxburg , S. Bengio , H. Wallach , R. Fergus , S. Vishwanathan , R. Garnett
Advances in Neural Information Processing Systems:

Population activity measurement by calcium imaging can be combined with cellular resolution optogenetic activity perturbations to enable the mapping of neural connectivity in vivo. This requires accurate inference of perturbed and unperturbed neural activity from calcium imaging measurements, which are noisy and indirect, and can also be contaminated by photostimulation artifacts. We have developed a new fully Bayesian approach to jointly inferring spiking activity and neural connectivity from in vivo all-optical perturbation experiments. In contrast to standard approaches that perform spike inference and analysis in two separate maximum-likelihood phases, our joint model is able to propagate uncertainty in spike inference to the inference of connectivity and vice versa. We use the framework of variational autoencoders to model spiking activity using discrete latent variables, low-dimensional latent common input, and sparse spike-and-slab generalized linear coupling between neurons. Additionally, we model two properties of the optogenetic perturbation: off-target photostimulation and photostimulation transients. Using this model, we were able to fit models on 30 minutes of data in just 10 minutes. We performed an all-optical circuit mapping experiment in primary visual cortex of the awake mouse, and use our approach to predict neural connectivity between excitatory neurons in layer 2/3. Predicted connectivity is sparse and consistent with known correlations with stimulus tuning, spontaneous correlation and distance.

 

 

View Publication Page
04/21/21 | Programmable 3D snapshot microscopy with Fourier convolutional networks
Deb D, Jiao Z, Chen AB, Broxton M, Ahrens MB, Podgorski K, Turaga SC

3D snapshot microscopy enables fast volumetric imaging by capturing a 3D volume in a single 2D camera image and performing computational reconstruction. Fast volumetric imaging has a variety of biological applications such as whole brain imaging of rapid neural activity in larval zebrafish. The optimal microscope design for this optical 3D-to-2D encoding is both sample- and task-dependent, with no general solution known. Deep learning based decoders can be combined with a differentiable simulation of an optical encoder for end-to-end optimization of both the deep learning decoder and optical encoder. This technique has been used to engineer local optical encoders for other problems such as depth estimation, 3D particle localization, and lensless photography. However, 3D snapshot microscopy is known to require a highly non-local optical encoder which existing UNet-based decoders are not able to engineer. We show that a neural network architecture based on global kernel Fourier convolutional neural networks can efficiently decode information from multiple depths in a volume, globally encoded across a 3D snapshot image. We show in simulation that our proposed networks succeed in engineering and reconstructing optical encoders for 3D snapshot microscopy where the existing state-of-the-art UNet architecture fails. We also show that our networks outperform the state-of-the-art learned reconstruction algorithms for a computational photography dataset collected on a prototype lensless camera which also uses a highly non-local optical encoding.

View Publication Page
03/26/21 | SongExplorer: A deep learning workflow for discovery and segmentation of animal acoustic communication signals
Arthur BJ, Ding Y, Sosale M, Khalif F, Kim E, Waddell P, Turaga SC, Stern DL
bioRxiv. 03/2021:. doi: 10.1101/2021.03.26.437280

Many animals produce distinct sounds or substrate-borne vibrations, but these signals have proved challenging to segment with automated algorithms. We have developed SongExplorer, a web-browser based interface wrapped around a deep-learning algorithm that supports an interactive workflow for (1) discovery of animal sounds, (2) manual annotation, (3) supervised training of a deep convolutional neural network, and (4) automated segmentation of recordings. Raw data can be explored by simultaneously examining song events, both individually and in the context of the entire recording, watching synced video, and listening to song. We provide a simple way to visualize many song events from large datasets within an interactive low-dimensional visualization, which facilitates detection and correction of incorrectly labelled song events. The machine learning model we implemented displays higher accuracy than existing heuristic algorithms and similar accuracy as two expert human annotators. We show that SongExplorer allows rapid detection of all song types from new species and of novel song types in previously well-studied species.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
06/27/19 | Teaching deep neural networks to localize single molecules for super-resolution microscopy
Speiser A, Müller L, Matti U, Obara CJ, Legant WR, Ries J, Macke JH, Turaga SC
arXiv e-prints. 06/2019:arXiv:1907.00770

Single-molecule localization fluorescence microscopy constructs super-resolution images by sequential imaging and computational localization of sparsely activated fluorophores. Accurate and efficient fluorophore localization algorithms are key to the success of this computational microscopy method. We present a novel localization algorithm based on deep learning which significantly improves upon the state of the art. Our contributions are a novel network architecture for simultaneous detection and localization, and new loss function which phrases detection and localization as a Bayesian inference problem, and thus allows the network to provide uncertainty-estimates. In contrast to standard methods which independently process imaging frames, our network architecture uses temporal context from multiple sequentially imaged frames to detect and localize molecules. We demonstrate the power of our method across a variety of datasets, imaging modalities, signal to noise ratios, and fluorophore densities. While existing localization algorithms can achieve optimal localization accuracy at low fluorophore densities, they are confounded by high densities. Our method is the first deep-learning based approach which achieves state-of-the-art on the SMLM2016 challenge. It achieves the best scores on 12 out of 12 data-sets when comparing both detection accuracy and precision, and excels at high densities. Finally, we investigate how unsupervised learning can be used to make the network robust against mismatch between simulated and real data. The lessons learned here are more generally relevant for the training of deep networks to solve challenging Bayesian inverse problems on spatially extended domains in biology and physics.

View Publication Page
06/27/19 | Teaching deep neural networks to localize single molecules for super-resolution microscopy
Artur Speiser , Lucas-Raphael Müller , Ulf Matti , Christopher J. Obara , Wesley R. Legant , Jonas Ries , Jakob H. Macke , Srinivas C. Turaga

Single-molecule localization fluorescence microscopy constructs super-resolution images by sequential imaging and computational localization of sparsely activated fluorophores. Accurate and efficient fluorophore localization algorithms are key to the success of this computational microscopy method. We present a novel localization algorithm based on deep learning which significantly improves upon the state of the art. Our contributions are a novel network architecture for simultaneous detection and localization, and new loss function which phrases detection and localization as a Bayesian inference problem, and thus allows the network to provide uncertainty-estimates. In contrast to standard methods which independently process imaging frames, our network architecture uses temporal context from multiple sequentially imaged frames to detect and localize molecules. We demonstrate the power of our method across a variety of datasets, imaging modalities, signal to noise ratios, and fluorophore densities. While existing localization algorithms can achieve optimal localization accuracy at low fluorophore densities, they are confounded by high densities. Our method is the first deep-learning based approach which achieves state-of-the-art on the SMLM2016 challenge. It achieves the best scores on 12 out of 12 data-sets when comparing both detection accuracy and precision, and excels at high densities. Finally, we investigate how unsupervised learning can be used to make the network robust against mismatch between simulated and real data. The lessons learned here are more generally relevant for the training of deep networks to solve challenging Bayesian inverse problems on spatially extended domains in biology and physics.

View Publication Page
Turaga LabSternson Lab
10/16/20 | Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles.
Xu S, Yang H, Menon V, Lemire AL, Wang L, Henry FE, Turaga SC, Sternson SM
Science. 2020 Oct 16;370(6514):. doi: 10.1126/science.abb2494

Brains encode behaviors using neurons amenable to systematic classification by gene expression. The contribution of molecular identity to neural coding is not understood because of the challenges involved with measuring neural dynamics and molecular information from the same cells. We developed CaRMA (calcium and RNA multiplexed activity) imaging based on recording in vivo single-neuron calcium dynamics followed by gene expression analysis. We simultaneously monitored activity in hundreds of neurons in mouse paraventricular hypothalamus (PVH). Combinations of cell-type marker genes had predictive power for neuronal responses across 11 behavioral states. The PVH uses combinatorial assemblies of molecularly defined neuron populations for grouped-ensemble coding of survival behaviors. The neuropeptide receptor neuropeptide Y receptor type 1 (Npy1r) amalgamated multiple cell types with similar responses. Our results show that molecularly defined neurons are important processing units for brain function.

View Publication Page
08/27/19 | Constraining computational models using electron microscopy wiring diagrams.
Litwin-Kumar A, Turaga SC
Current Opinion in Neurobiology. 2019 Aug 27;58:94-100. doi: 10.1016/j.conb.2019.07.007

Numerous efforts to generate "connectomes," or synaptic wiring diagrams, of large neural circuits or entire nervous systems are currently underway. These efforts promise an abundance of data to guide theoretical models of neural computation and test their predictions. However, there is not yet a standard set of tools for incorporating the connectivity constraints that these datasets provide into the models typically studied in theoretical neuroscience. This article surveys recent approaches to building models with constrained wiring diagrams and the insights they have provided. It also describes challenges and the need for new techniques to scale these approaches to ever more complex datasets.

View Publication Page