Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Turner Lab / Publications
general_search_page-panel_pane_1 | views_panes

25 Publications

Showing 1-10 of 25 results
05/26/22 | One engram two readouts: stimulus dynamics switch a learned behavior in Drosophila
Mehrab N Modi , Adithya Rajagopalan , Hervé Rouault , Yoshinori Aso , Glenn C Turner
bioRxiv. 2022 May 26:. doi: 10.1101/2022.05.24.492551

Memory guides the choices an animal makes across widely varying conditions in dynamic environments. Consequently, the most adaptive choice depends on the options available. How can a single memory support optimal behavior across different sets of choice options? We address this using olfactory learning in Drosophila. Even when we restrict an odor-punishment association to a single set of synapses using optogenetics, we find that flies still show choice behavior that depends on the options it encounters. Here we show that how the odor choices are presented to the animal influences memory recall itself. Presenting two similar odors in sequence enabled flies to not only discriminate them behaviorally but also at the level of neural activity. However, when the same odors were encountered as solitary stimuli, no such differences were detectable. These results show that memory recall is not simply a comparison to a static learned template, but can be adaptively modulated by stimulus dynamics.

View Publication Page
05/25/22 | Expectation-based learning rules underlie dynamic foraging in Drosophila
Adithya E. Rajagopalan , Ran Darshan , James E. Fitzgerald , Glenn C. Turner
bioRxiv. 2022 May 25:. doi: 10.1101/2022.05.24.493252

Foraging animals must use decision-making strategies that dynamically account for uncertainty in the world. To cope with this uncertainty, animals have developed strikingly convergent strategies that use information about multiple past choices and reward to learn representations of the current state of the world. However, the underlying learning rules that drive the required learning have remained unclear. Here, working in the relatively simple nervous system of Drosophila, we combine behavioral measurements, mathematical modeling, and neural circuit perturbations to show that dynamic foraging depends on a learning rule incorporating reward expectation. Using a novel olfactory dynamic foraging task, we characterize the behavioral strategies used by individual flies when faced with unpredictable rewards and show, for the first time, that they perform operant matching. We build on past theoretical work and demonstrate that this strategy requires the existence of a covariance-based learning rule in the mushroom body - a hub for learning in the fly. In particular, the behavioral consequences of optogenetic perturbation experiments suggest that this learning rule incorporates reward expectation. Our results identify a key element of the algorithm underlying dynamic foraging in flies and suggest a comprehensive mechanism that could be fundamental to these behaviors across species.

View Publication Page
02/01/22 | Idiosyncratic learning performance in flies.
Smith MA, Honegger KS, Turner G, de Bivort B
Biology Letters. 2022 Feb 01;18(2):20210424. doi: 10.1098/rsbl.2021.0424

Individuals vary in their innate behaviours, even when they have the same genome and have been reared in the same environment. The extent of individuality in plastic behaviours, like learning, is less well characterized. Also unknown is the extent to which intragenotypic differences in learning generalize: if an individual performs well in one assay, will it perform well in other assays? We investigated this using the fruit fly , an organism long-used to study the mechanistic basis of learning and memory. We found that isogenic flies, reared in identical laboratory conditions, and subject to classical conditioning that associated odorants with electric shock, exhibit clear individuality in their learning responses. Flies that performed well when an odour was paired with shock tended to perform well when the odour was paired with bitter taste or when other odours were paired with shock. Thus, individuality in learning performance appears to be prominent in isogenic animals reared identically, and individual differences in learning performance generalize across some aversive sensory modalities. Establishing these results in flies opens up the possibility of studying the genetic and neural circuit basis of individual differences in learning in a highly suitable model organism.

View Publication Page
01/25/21 | Idiosyncratic learning performance in flies generalizes across modalities.
Matthew Smith , Kyle S. Honegger , Glenn Turner , Benjamin de Bivort
bioRxiv. 2021 Jan 25:

Individuals vary in their innate behaviors, even when they have the same genome and have been reared in the same environment. The extent of individuality in plastic behaviors, like learning, is less well characterized. Also unknown is the extent to which intragenotypic differences in learning generalize: if an individual performs well in one assay, will it perform well in other assays? We investigated this using the fruit fly Drosophila melanogaster, an organism long-used to study the mechanistic basis of learning and memory. We found that isogenic flies, reared in identical lab conditions, and subject to classical conditioning that associated odorants with electric shock, exhibit clear individuality in their learning responses. Flies that performed well when an odor was paired with shock tended to perform well when other odors were paired with shock, or when the original odor was paired with bitter taste. Thus, individuality in learning performance appears to be prominent in isogenic animals reared identically, and individual differences in learning performance generalize across stimulus modalities. Establishing these results in flies opens up the possibility of studying the genetic and neural circuit basis of individual differences in learning in a highly suitable model organism.

View Publication Page
09/22/20 | Idiosyncratic neural coding and neuromodulation of olfactory individuality in Drosophila.
Honegger KS, Smith MA, Churgin MA, Turner GC, de Bivort BL
Proceedings of the National Academy of Sciences of the United States of America. 2020 Sep 22;117(38):23292-23297. doi: 10.1073/pnas.1901623116

Innate behavioral biases and preferences can vary significantly among individuals of the same genotype. Though individuality is a fundamental property of behavior, it is not currently understood how individual differences in brain structure and physiology produce idiosyncratic behaviors. Here we present evidence for idiosyncrasy in olfactory behavior and neural responses in We show that individual female from a highly inbred laboratory strain exhibit idiosyncratic odor preferences that persist for days. We used in vivo calcium imaging of neural responses to compare projection neuron (second-order neurons that convey odor information from the sensory periphery to the central brain) responses to the same odors across animals. We found that, while odor responses appear grossly stereotyped, upon closer inspection, many individual differences are apparent across antennal lobe (AL) glomeruli (compact microcircuits corresponding to different odor channels). Moreover, we show that neuromodulation, environmental stress in the form of altered nutrition, and activity of certain AL local interneurons affect the magnitude of interfly behavioral variability. Taken together, this work demonstrates that individual exhibit idiosyncratic olfactory preferences and idiosyncratic neural responses to odors, and that behavioral idiosyncrasies are subject to neuromodulation and regulation by neurons in the AL.

View Publication Page
07/08/20 | The Drosophila mushroom body: From architecture to algorithm in a learning circuit.
Modi MN, Shuai Y, Turner GC
Annual Review of Neuroscience. 2020 Jul 08;43:465-484. doi: 10.1146/annurev-neuro-080317-0621333

The brain contains a relatively simple circuit for forming Pavlovian associations, yet it achieves many operations common across memory systems. Recent advances have established a clear framework for learning and revealed the following key operations: ) pattern separation, whereby dense combinatorial representations of odors are preprocessed to generate highly specific, nonoverlapping odor patterns used for learning; ) convergence, in which sensory information is funneled to a small set of output neurons that guide behavioral actions; ) plasticity, where changing the mapping of sensory input to behavioral output requires a strong reinforcement signal, which is also modulated by internal state and environmental context; and ) modularization, in which a memory consists of multiple parallel traces, which are distinct in stability and flexibility and exist in anatomically well-defined modules within the network. Cross-module interactions allow for higher-order effects where past experience influences future learning. Many of these operations have parallels with processes of memory formation and action selection in more complex brains.

View Publication Page
04/13/20 | The Mushroom Body: From Architecture to Algorithm in a Learning Circuit.
Modi MN, Shuai Y, Turner GC
Annual Review of Neuroscience. 2020 Apr 13:. doi: 10.1146/annurev-neuro-080317-0621333

The brain contains a relatively simple circuit for forming Pavlovian associations, yet it achieves many operations common across memory systems. Recent advances have established a clear framework for learning and revealed the following key operations: ) pattern separation, whereby dense combinatorial representations of odors are preprocessed to generate highly specific, nonoverlapping odor patterns used for learning; ) convergence, in which sensory information is funneled to a small set of output neurons that guide behavioral actions; ) plasticity, where changing the mapping of sensory input to behavioral output requires a strong reinforcement signal, which is also modulated by internal state and environmental context; and ) modularization, in which a memory consists of multiple parallel traces, which are distinct in stability and flexibility and exist in anatomically well-defined modules within the network. Cross-module interactions allow for higher-order effects where past experience influences future learning. Many of these operations have parallels with processes of memory formation and action selection in more complex brains. Expected final online publication date for the , Volume 43 is July 8, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
11/25/19 | Two-photon imaging with silicon photomultipliers.
Modi MN, Daie K, Turner GC, Podgorski K
Optics Express. 2019 Nov 25;27(24):35830-35841. doi: 10.1364/OE.27.035830

We compared performance of recently developed silicon photomultipliers (SiPMs) to GaAsP photomultiplier tubes (PMTs) for two-photon imaging of neural activity. Despite higher dark counts, SiPMs match or exceed the signal-to-noise ratio of PMTs at photon rates encountered in typical calcium imaging experiments due to their low pulse height variability. At higher photon rates encountered during high-speed voltage imaging, SiPMs substantially outperform PMTs.

View Publication Page
08/13/19 | Bright and photostable chemigenetic indicators for extended in vivo voltage imaging.
Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang Y, Campagnola L, Seeman SC, Yu J, Zheng J, Grimm JB, Patel R, Friedrich J, Mensh BD, Paninski L, Macklin JJ, Murphy GJ, Podgorski K, Lin B, Chen T, Turner GC, Liu Z, Koyama M, Svoboda K, Ahrens MB, Lavis LD, Schreiter ER
Science. 2019 Aug 13;365(6454):699-704. doi: 10.1126/science.aav6416

Imaging changes in membrane potential using genetically encoded fluorescent voltage indicators (GEVIs) has great potential for monitoring neuronal activity with high spatial and temporal resolution. Brightness and photostability of fluorescent proteins and rhodopsins have limited the utility of existing GEVIs. We engineered a novel GEVI, "Voltron", that utilizes bright and photostable synthetic dyes instead of protein-based fluorophores, extending the combined duration of imaging and number of neurons imaged simultaneously by more than tenfold relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously, over 15 min of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.

View Publication Page
07/18/17 | A connectome of a learning and memory center in the adult Drosophila brain.
Takemura S, Aso Y, Hige T, Wong AM, Lu Z, Xu CS, Rivlin PK, Hess HF, Zhao T, Parag T, Berg S, Huang G, Katz WT, Olbris DJ, Plaza SM, Umayam LA, Aniceto R, Chang L, Lauchie S, et al
eLife. 2017 Jul 18;6:e26975. doi: 10.7554/eLife.26975

Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB’s α lobe, using a dataset of isotropic 8-nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only six percent of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall.

View Publication Page