Filter
Associated Lab
- Dudman Lab (3) Apply Dudman Lab filter
- Harris Lab (1) Apply Harris Lab filter
- Keller Lab (1) Apply Keller Lab filter
- Lavis Lab (1) Apply Lavis Lab filter
- Looger Lab (1) Apply Looger Lab filter
- Spruston Lab (4) Apply Spruston Lab filter
- Sternson Lab (1) Apply Sternson Lab filter
- Svoboda Lab (6) Apply Svoboda Lab filter
- Tillberg Lab (1) Apply Tillberg Lab filter
- Zuker Lab (1) Apply Zuker Lab filter
Associated Project Team
Publication Date
Type of Publication
18 Publications
Showing 1-10 of 18 resultsHortaCloud is a cloud-based, open-source platform designed to facilitate the collaborative reconstruction of long-range projection neurons from whole-brain light microscopy data. By providing virtual environments directly within the cloud, it eliminates the need for costly and time-consuming data downloads, allowing researchers to work efficiently with terabyte- scale volumetric datasets. Standardization of computational resources in the cloud make deployment easier and more predictable. The pay-as-you-go cloud model reduces adoption barriers by eliminating upfront investments in expensive hardware. Finally, HortaCloud’s decentralized architecture enables global collaboration between researchers and between institutions.
Effective classification of neuronal cell types requires both molecular and morphological descriptors to be collected in situ at single cell resolution. However, current spatial transcriptomics techniques are not compatible with imaging workflows that successfully reconstruct the morphology of complete axonal projections. Here, we introduce a new methodology that combines tissue clearing, submicron whole-brain two photon imaging, and Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to assign molecular identities to fully reconstructed neurons in the mouse brain, which we call morphoFISH. We used morphoFISH to molecularly identify a previously unknown population of cingulate neurons projecting ipsilaterally to the dorsal striatum and contralaterally to higher-order thalamus. By pairing whole-brain morphometry, improved techniques for nucleic acid preservation and spatial gene expression, morphoFISH offers a quantitative solution for discovery of multimodal cell types and complements existing techniques for characterization of increasingly fine-grained cellular heterogeneity in brain circuits.Competing Interest StatementThe authors have declared no competing interest.
Dendritic spines are tiny protrusions found along the dendrites of neurons, and their number is a measure of the density of synaptic connections. Altered density and morphology is observed in several pathologies, and spine formation as well as morphological changes correlate with learning and memory. The detection of spines in microscopy images and the analysis of their morphology is therefore a prerequisite for many studies. We have developed a new open-source, freely available, plugin for ImageJ/FIJI, called Spot Spine, that allows detection and morphological measurements of spines in three dimensional images. Local maxima are detected in spine heads, and the intensity distribution around the local maximum is computed to perform the segmentation of each spine head. Spine necks are then traced from the spine head to the dendrite. Several parameters can be set to optimize detection and segmentation, and manual correction gives further control over the result of the process. The plugin allows the analysis of images of dendrites obtained with various labeling and imaging methods. Quantitative measurements are retrieved including spine head volume and surface, and neck length. The plugin and instructions for use are available at https://imagej.net/plugins/spot-spine.Background
Method
Results
Conclusion
Behavior requires neural activity across the brain, but most experiments probe neurons in a single area at a time. Here we used multiple Neuropixels probes to record neural activity simultaneously in brain-wide circuits, in mice performing a memory-guided directional licking task. We targeted brain areas that form multi-regional loops with anterior lateral motor cortex (ALM), a key circuit node mediating the behavior. Neurons encoding sensory stimuli, choice, and actions were distributed across the brain. However, in addition to ALM, coding of choice was concentrated in subcortical areas receiving input from ALM, in an ALM-dependent manner. Choice signals were first detected in ALM and the midbrain, followed by the thalamus, and other brain areas. At the time of movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.
The microvasculature underlies the supply networks that support neuronal activity within heterogeneous brain regions. What are common versus heterogeneous aspects of the connectivity, density, and orientation of capillary networks? To address this, we imaged, reconstructed, and analyzed the microvasculature connectome in whole adult mice brains with sub-micrometer resolution. Graph analysis revealed common network topology across the brain that leads to a shared structural robustness against the rarefaction of vessels. Geometrical analysis, based on anatomically accurate reconstructions, uncovered a scaling law that links length density, i.e., the length of vessel per volume, with tissue-to-vessel distances. We then derive a formula that connects regional differences in metabolism to differences in length density and, further, predicts a common value of maximum tissue oxygen tension across the brain. Last, the orientation of capillaries is weakly anisotropic with the exception of a few strongly anisotropic regions; this variation can impact the interpretation of fMRI data.
Tissue clearing and light-sheet microscopy have a 100-year-plus history, yet these fields have been combined only recently to facilitate novel experiments and measurements in neuroscience. Since tissue-clearing methods were first combined with modernized light-sheet microscopy a decade ago, the performance of both technologies has rapidly improved, broadening their applications. Here, we review the state of the art of tissue-clearing methods and light-sheet microscopy and discuss applications of these techniques in profiling cells and circuits in mice. We examine outstanding challenges and future opportunities for expanding these techniques to achieve brain-wide profiling of cells and circuits in primates and humans. Such integration will help provide a systems-level understanding of the physiology and pathology of our central nervous system.
Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neurons in the mouse brain have been reconstructed in their entirety. Here we present a robust and efficient platform for imaging and reconstructing complete neuronal morphologies, including axonal arbors that span substantial portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons constitute more than 85 meters of axonal length and are available in a searchable online database. Axonal shapes revealed previously unknown subtypes of projection neurons and suggest organizational principles of long-range connectivity.
The thalamus is the central communication hub of the forebrain and provides the cerebral cortex with inputs from sensory organs, subcortical systems and the cortex itself. Multiple thalamic regions send convergent information to each cortical region, but the organizational logic of thalamic projections has remained elusive. Through comprehensive transcriptional analyses of retrogradely labeled thalamic neurons in adult mice, we identify three major profiles of thalamic pathways. These profiles exist along a continuum that is repeated across all major projection systems, such as those for vision, motor control and cognition. The largest component of gene expression variation in the mouse thalamus is topographically organized, with features conserved in humans. Transcriptional differences between these thalamic neuronal identities are tied to cellular features that are critical for function, such as axonal morphology and membrane properties. Molecular profiling therefore reveals covariation in the properties of thalamic pathways serving all major input modalities and output targets, thus establishing a molecular framework for understanding the thalamus.
Understanding the principles governing neuronal diversity is a fundamental goal for neuroscience. Here we provide an anatomical and transcriptomic database of nearly 200 genetically identified cell populations. By separately analyzing the robustness and pattern of expression differences across these cell populations, we identify two gene classes contributing distinctly to neuronal diversity. Short homeobox transcription factors distinguish neuronal populations combinatorially, and exhibit extremely low transcriptional noise, enabling highly robust expression differences. Long neuronal effector genes, such as channels and cell adhesion molecules, contribute disproportionately to neuronal diversity, based on their patterns rather than robustness of expression differences. By linking transcriptional identity to genetic strains and anatomical atlases we provide an extensive resource for further investigation of mouse neuronal cell types.