Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2432 Janelia Publications

Showing 181-190 of 2432 results
05/22/23 | Extracellular matrix assembly stress initiates Drosophila central nervous system morphogenesis.
Serna-Morales E, Sánchez-Sánchez BJ, Marcotti S, Nichols A, Bhargava A, Dragu A, Hirvonen LM, Diaz-de-la-Loza M, Mink M, Cox S, Rayfield E, Lee RM, Hobson CM, Chew T, Stramer BM
Developmental Cell. 2023 May 22;58(10):825-835.e6. doi: 10.1016/j.devcel.2023.03.019

Forces controlling tissue morphogenesis are attributed to cellular-driven activities, and any role for extracellular matrix (ECM) is assumed to be passive. However, all polymer networks, including ECM, can develop autonomous stresses during their assembly. Here, we examine the morphogenetic function of an ECM before reaching homeostatic equilibrium by analyzing de novo ECM assembly during Drosophila ventral nerve cord (VNC) condensation. Asymmetric VNC shortening and a rapid decrease in surface area correlate with the exponential assembly of collagen IV (Col4) surrounding the tissue. Concomitantly, a transient developmentally induced Col4 gradient leads to coherent long-range flow of ECM, which equilibrates the Col4 network. Finite element analysis and perturbation of Col4 network formation through the generation of dominant Col4 mutations that affect assembly reveal that VNC morphodynamics is partially driven by a sudden increase in ECM-driven surface tension. These data suggest that ECM assembly stress and associated network instabilities can actively participate in tissue morphogenesis.

View Publication Page
05/18/23 | Autophagy receptor NDP52 alters DNA conformation to modulate RNA polymerase II transcription.
Dos Santos Á, Rollins DE, Hari-Gupta Y, McArthur H, Du M, Ru SY, Pidlisna K, Stranger A, Lorgat F, Lambert D, Brown I, Howland K, Aaron J, Wang L, Ellis PJ, Chew T, Martin-Fernandez M, Pyne AL, Toseland CP
Nature Communications. 2023 May 18;14(1):2855. doi: 10.1038/s41467-023-38572-9

NDP52 is an autophagy receptor involved in the recognition and degradation of invading pathogens and damaged organelles. Although NDP52 was first identified in the nucleus and is expressed throughout the cell, to date, there is no clear nuclear functions for NDP52. Here, we use a multidisciplinary approach to characterise the biochemical properties and nuclear roles of NDP52. We find that NDP52 clusters with RNA Polymerase II (RNAPII) at transcription initiation sites and that its overexpression promotes the formation of additional transcriptional clusters. We also show that depletion of NDP52 impacts overall gene expression levels in two model mammalian cells, and that transcription inhibition affects the spatial organisation and molecular dynamics of NDP52 in the nucleus. This directly links NDP52 to a role in RNAPII-dependent transcription. Furthermore, we also show that NDP52 binds specifically and with high affinity to double-stranded DNA (dsDNA) and that this interaction leads to changes in DNA structure in vitro. This, together with our proteomics data indicating enrichment for interactions with nucleosome remodelling proteins and DNA structure regulators, suggests a possible function for NDP52 in chromatin regulation. Overall, here we uncover nuclear roles for NDP52 in gene expression and DNA structure regulation.

View Publication Page
Svoboda LabDarshan Lab
05/18/23 | Distributing task-related neural activity across a cortical network through task-independent connections.
Kim CM, Finkelstein A, Chow CC, Svoboda K, Darshan R
Nature Communications. 2023 May 18;14(1):2851. doi: 10.1038/s41467-023-38529-y

Task-related neural activity is widespread across populations of neurons during goal-directed behaviors. However, little is known about the synaptic reorganization and circuit mechanisms that lead to broad activity changes. Here we trained a subset of neurons in a spiking network with strong synaptic interactions to reproduce the activity of neurons in the motor cortex during a decision-making task. Task-related activity, resembling the neural data, emerged across the network, even in the untrained neurons. Analysis of trained networks showed that strong untrained synapses, which were independent of the task and determined the dynamical state of the network, mediated the spread of task-related activity. Optogenetic perturbations suggest that the motor cortex is strongly-coupled, supporting the applicability of the mechanism to cortical networks. Our results reveal a cortical mechanism that facilitates distributed representations of task-variables by spreading the activity from a subset of plastic neurons to the entire network through task-independent strong synapses.

View Publication Page
05/18/23 | Nanoparticle-based targeting of microglia improves the neural regeneration enhancing effects of immunosuppression in the zebrafish retina.
Emmerich K, White DT, Kambhampati SP, Casado GL, Fu T, Chunawala Z, Sahoo A, Nimmagadda S, Krishnan N, Saxena MT, Walker SL, Betzig E, Kannan RM, Mumm JS
Communications Biology. 2023 May 18;6(1):534. doi: 10.1038/s42003-023-04898-9

Retinal Müller glia function as injury-induced stem-like cells in zebrafish but not mammals. However, insights gleaned from zebrafish have been applied to stimulate nascent regenerative responses in the mammalian retina. For instance, microglia/macrophages regulate Müller glia stem cell activity in the chick, zebrafish, and mouse. We previously showed that post-injury immunosuppression by the glucocorticoid dexamethasone accelerated retinal regeneration kinetics in zebrafish. Similarly, microglia ablation enhances regenerative outcomes in the mouse retina. Targeted immunomodulation of microglia reactivity may therefore enhance the regenerative potential of Müller glia for therapeutic purposes. Here, we investigated potential mechanisms by which post-injury dexamethasone accelerates retinal regeneration kinetics, and the effects of dendrimer-based targeting of dexamethasone to reactive microglia. Intravital time-lapse imaging revealed that post-injury dexamethasone inhibited microglia reactivity. The dendrimer-conjugated formulation: (1) decreased dexamethasone-associated systemic toxicity, (2) targeted dexamethasone to reactive microglia, and (3) improved the regeneration enhancing effects of immunosuppression by increasing stem/progenitor proliferation rates. Lastly, we show that the gene rnf2 is required for the enhanced regeneration effect of D-Dex. These data support the use of dendrimer-based targeting of reactive immune cells to reduce toxicity and enhance the regeneration promoting effects of immunosuppressants in the retina.

View Publication Page
05/17/23 | Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator
Abdelfattah AS, Zheng J, Singh A, Huang Y, Reep D, Tsegaye G, Tsang A, Arthur BJ, Rehorova M, Olson CV, Shuai Y, Zhang L, Fu T, Milkie DE, Moya MV, Weber TD, Lemire AL, Baker CA, Falco N, Zheng Q, Grimm JB, Yip MC, Walpita D, Chase M, Campagnola L, Murphy GJ, Wong AM, Forest CR, Mertz J, Economo MN, Turner GC, Koyama M, Lin B, Betzig E, Novak O, Lavis LD, Svoboda K, Korff W, Chen T, Schreiter ER, Hasseman JP, Kolb I
Neuron. 2023 May 17;111(10):1547-1563. doi: 10.1016/j.neuron.2023.03.009

The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.

View Publication Page
05/08/23 | Lipid flipping in the omega-3 fatty-acid transporter.
Nguyen C, Lei H, Lai LT, Gallenito MJ, Mu X, Matthies D, Gonen T
Nature Communications. 2023 May 08;14(1):2571. doi: 10.1038/s41467-023-37702-7

Mfsd2a is the transporter for docosahexaenoic acid (DHA), an omega-3 fatty acid, across the blood brain barrier (BBB). Defects in Mfsd2a are linked to ailments from behavioral and motor dysfunctions to microcephaly. Mfsd2a transports long-chain unsaturated fatty-acids, including DHA and α-linolenic acid (ALA), that are attached to the zwitterionic lysophosphatidylcholine (LPC) headgroup. Even with the recently determined structures of Mfsd2a, the molecular details of how this transporter performs the energetically unfavorable task of translocating and flipping lysolipids across the lipid bilayer remains unclear. Here, we report five single-particle cryo-EM structures of Danio rerio Mfsd2a (drMfsd2a): in the inward-open conformation in the ligand-free state and displaying lipid-like densities modeled as ALA-LPC at four distinct positions. These Mfsd2a snapshots detail the flipping mechanism for lipid-LPC from outer to inner membrane leaflet and release for membrane integration on the cytoplasmic side. These results also map Mfsd2a mutants that disrupt lipid-LPC transport and are associated with disease.

View Publication Page
05/02/23 | A leaky integrate-and-fire computational model based on the connectome of the entire adult Drosophila brain reveals insights into sensorimotor processing
Philip K. Shiu , Gabriella R. Sterne , Nico Spiller , Romain Franconville , Andrea Sandoval , Joie Zhou , Neha Simha , Chan Hyuk Kang , Seongbong Yu , Jinseop S. Kim , Sven Dorkenwald , Arie Matsliah , Philipp Schlegel , Szi-chieh Yu , Claire E. McKellar , Amy Sterling , Marta Costa , Katharina Eichler , Gregory S.X.E. Jefferis , Mala Murthy , Alexander Shakeel Bates , Nils Eckstein , Jan Funke , Salil S. Bidaye , Stefanie Hampel , Andrew M. Seeds , Kristin Scott
bioRxiv. 2023 May 02:. doi: 10.1101/2023.05.02.539144

The forthcoming assembly of the adult Drosophila melanogaster central brain connectome, containing over 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here, we create a leaky integrate-and-fire computational model of the entire Drosophila brain, based on neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviors. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. Computational activation of neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing, a testable hypothesis that we validate by optogenetic activation and behavioral studies. Moreover, computational activation of different classes of gustatory neurons makes accurate predictions of how multiple taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Our computational model predicts that the sugar and water pathways form a partially shared appetitive feeding initiation pathway, which our calcium imaging and behavioral experiments confirm. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit that do not overlap with gustatory circuits, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modeling brain circuits purely from connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can accurately describe complete sensorimotor transformations.

View Publication Page
05/02/23 | Meta-learning in head fixed mice navigating in virtual reality: A Behavioral Analysis
Xinyu Zhao , Rachel Gattoni , Andrea Kozlosky , Angela Jacobs , Colin Morrow , Sarah Lindo , Nelson Spruston
bioRxiv. 2023 May 02:. doi: 10.1101/2023.05.01.538936

Animals can learn general task structures and use them to solve new problems with novel sensory specifics. This capacity of ‘learning to learn’, or meta-learning, is difficult to achieve in artificial systems, and the mechanisms by which it is achieved in animals are unknown. As a step toward enabling mechanistic studies, we developed a behavioral paradigm that demonstrates meta-learning in head-fixed mice. We trained mice to perform a two-alternative forced-choice task in virtual reality (VR), and successively changed the visual cues that signaled reward location. Mice showed increased learning speed in both cue generalization and serial reversal tasks. During reversal learning, behavior exhibited sharp transitions, with the transition occurring earlier in each successive reversal. Analysis of motor patterns revealed that animals utilized similar motor programs to execute the same actions in response to different cues but modified the motor programs during reversal learning. Our study demonstrates that mice can perform meta-learning tasks in VR, thus opening up opportunities for future mechanistic studies.

View Publication Page
Sternson Lab
05/01/23 | Modulation of calcium signaling “on demand” to decipher the molecular mechanisms responsible for primary aldosteronism
Fedlaoui B, Cosentino T, Al Sayed ZR, Fernandes-Rosa FL, Hulot J, Magnus C, Sternson SM, Travers-Allard S, Baron S, Giscos-Douriez I, Zennaro MC, Boulkroun S
Archives of Cardiovascular Diseases Supplements. 2023 May 01;15(2):188. doi: 10.1016/j.acvdsp.2023.03.021

Primary aldosteronism (PA) is the most frequent form of secondary hypertension. Over the past two decades, major advances have been made in our understanding of the disease with the identification of germline or somatic mutations in ion channels and pumps. These mutations enhance calcium signaling, the main trigger of aldosterone biosynthesis.

View Publication Page
05/01/23 | Time-tagged ticker tapes for intracellular recordings.
Lin D, Li X, Moult E, Park P, Tang B, Shen H, Grimm JB, Falco N, Jia BZ, Baker D, Lavis LD, Cohen AE
Nature Biotechnology. 2023 May 01;41(5):631-9. doi: 10.1038/s41587-022-01524-7

Recording transcriptional histories of a cell would enable deeper understanding of cellular developmental trajectories and responses to external perturbations. Here we describe an engineered protein fiber that incorporates diverse fluorescent marks during its growth to store a ticker tape-like history. An embedded HaloTag reporter incorporates user-supplied dyes, leading to colored stripes that map the growth of each individual fiber to wall clock time. A co-expressed eGFP tag driven by a promoter of interest records a history of transcriptional activation. High-resolution multi-spectral imaging on fixed samples reads the cellular histories, and interpolation of eGFP marks relative to HaloTag timestamps provides accurate absolute timing. We demonstrate recordings of doxycycline-induced transcription in HEK cells and cFos promoter activation in cultured neurons, with a single-cell absolute accuracy of 30-40 minutes over a 12-hour recording. The protein-based ticker tape design we present here could be generalized to achieve massively parallel single-cell recordings of diverse physiological modalities.

View Publication Page