Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    07/15/10 | Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. (With commentary)
    Frost NA, Shroff H, Kong H, Betzig E, Blanpied TA
    Neuron. 2010 Jul 15;67(1):86-99. doi: 10.1016/j.neuron.2010.05.026

    Within dendritic spines, actin is presumed to anchor receptors in the postsynaptic density and play numerous roles regulating synaptic transmission. However, the submicron dimensions of spines have hindered examination of actin dynamics within them and prevented live-cell discrimination of perisynaptic actin filaments. Using photoactivated localization microscopy, we measured movement of individual actin molecules within living spines. Velocity of single actin molecules along filaments, an index of filament polymerization rate, was highly heterogeneous within individual spines. Most strikingly, molecular velocity was elevated in discrete, well-separated foci occurring not principally at the spine tip, but in subdomains throughout the spine, including the neck. Whereas actin velocity on filaments at the synapse was substantially elevated, at the endocytic zone there was no enhanced polymerization activity. We conclude that actin subserves spatially diverse, independently regulated processes throughout spines. Perisynaptic actin forms a uniquely dynamic structure well suited for direct, active regulation of the synapse.

    Commentary: A nice application of single particle tracking PALM (sptPALM), showing the flow of actin in the spines of live cultured neurons. Since 2008, the PALM in our lab has largely become a user facility, available to outside users as well as Janelians. Grad student Nick Frost in Tom Blanpied’s group at the U. of Maryland Med School visited on a number of occasions to use the PALM, with training and assistance from Hari.

    View Publication Page
    02/01/10 | Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues.
    Ji N, Milkie DE, Betzig E
    Nature Methods. 2010 Feb;7:141-7. doi: 10.1038/nmeth.1411

    Biological specimens are rife with optical inhomogeneities that seriously degrade imaging performance under all but the most ideal conditions. Measuring and then correcting for these inhomogeneities is the province of adaptive optics. Here we introduce an approach to adaptive optics in microscopy wherein the rear pupil of an objective lens is segmented into subregions, and light is directed individually to each subregion to measure, by image shift, the deflection faced by each group of rays as they emerge from the objective and travel through the specimen toward the focus. Applying our method to two-photon microscopy, we could recover near-diffraction-limited performance from a variety of biological and nonbiological samples exhibiting aberrations large or small and smoothly varying or abruptly changing. In particular, results from fixed mouse cortical slices illustrate our ability to improve signal and resolution to depths of 400 microm.

    View Publication Page
    02/01/10 | Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. (With commentary)
    Ji N, Milkie DE, Betzig E
    Nature Methods. 2010 Feb;7:141-7. doi: 10.1038/nmeth.1411

    Biological specimens are rife with optical inhomogeneities that seriously degrade imaging performance under all but the most ideal conditions. Measuring and then correcting for these inhomogeneities is the province of adaptive optics. Here we introduce an approach to adaptive optics in microscopy wherein the rear pupil of an objective lens is segmented into subregions, and light is directed individually to each subregion to measure, by image shift, the deflection faced by each group of rays as they emerge from the objective and travel through the specimen toward the focus. Applying our method to two-photon microscopy, we could recover near-diffraction-limited performance from a variety of biological and nonbiological samples exhibiting aberrations large or small and smoothly varying or abruptly changing. In particular, results from fixed mouse cortical slices illustrate our ability to improve signal and resolution to depths of 400 microm.

    Commentary: Introduces a new, zonal approach to adaptive optics (AO) in microscopy suitable for highly inhomogeneous and/or scattering samples such as living tissue. The method is unique in its ability to handle large amplitude aberrations (>20 wavelengths), including spatially complex aberrations involving high order modes beyond the ability of most AO actuators to correct. As befitting a technique designed for in vivo fluorescence imaging, it is also photon efficient.
    Although used here in conjunction with two photon microscopy to demonstrate correction deep into scattering tissue, the same principle of pupil segmentation might be profitably adapted to other point-scanning or widefield methods. For example, plane illumination microscopy of multicellular specimens is often beset by substantial aberrations, and all far-field superresolution methods are exquisitely sensitive to aberrations.

    View Publication Page