Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

191 Janelia Publications

Showing 181-190 of 191 results
Your Criteria:
    01/25/16 | Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos.
    Stegmaier J, Amat F, Lemon WC, McDole K, Wan Y, Teodoro G, Mikut R, Keller PJ
    Developmental Cell. 2016 Jan 25;36(2):225-40. doi: 10.1016/j.devcel.2015.12.028

    We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55–330 times faster and 2–5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS.

    View Publication Page
    01/20/16 | A platform for brain-wide imaging and reconstruction of individual neurons.
    Economo MN, Clack NG, Lavis LD, Gerfen CR, Svoboda K, Myers EW, Chandrashekar J
    eLife. 2016 Jan 20;5:. doi: 10.7554/eLife.10566

    The structure of axonal arbors controls how signals from individual neurons are routed within the mammalian brain. However, the arbors of very few long-range projection neurons have been reconstructed in their entirety, as axons with diameters as small as 100 nm arborize in target regions dispersed over many millimeters of tissue. We introduce a platform for high-resolution, three-dimensional fluorescence imaging of complete tissue volumes that enables the visualization and reconstruction of long-range axonal arbors. This platform relies on a high-speed two-photon microscope integrated with a tissue vibratome and a suite of computational tools for large-scale image data. We demonstrate the power of this approach by reconstructing the axonal arbors of multiple neurons in the motor cortex across a single mouse brain.

    View Publication Page
    01/20/16 | Simultaneous denoising, deconvolution, and demixing of calcium imaging data.
    Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J, Pfau D, Reardon T, Mu Y, Lacefield C, Yang W, Ahrens M, Bruno R, Jessell TM, Peterka DS, Yuste R, Paninski L
    Neuron. 2016 Jan 20;89(2):285-99. doi: 10.1016/j.neuron.2015.11.037

    We present a modular approach for analyzing calcium imaging recordings of large neuronal ensembles. Our goal is to simultaneously identify the locations of the neurons, demix spatially overlapping components, and denoise and deconvolve the spiking activity from the slow dynamics of the calcium indicator. Our approach relies on a constrained nonnegative matrix factorization that expresses the spatiotemporal fluorescence activity as the product of a spatial matrix that encodes the spatial footprint of each neuron in the optical field and a temporal matrix that characterizes the calcium concentration of each neuron over time. This framework is combined with a novel constrained deconvolution approach that extracts estimates of neural activity from fluorescence traces, to create a spatiotemporal processing algorithm that requires minimal parameter tuning. We demonstrate the general applicability of our method by applying it to in vitro and in vivo multi-neuronal imaging data, whole-brain light-sheet imaging data, and dendritic imaging data.

    View Publication Page
    01/13/16 | Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons.
    Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N
    Neuron. 2016 Jan 13:. doi: 10.1016/j.neuron.2015.12.013

    Tissue and organ function has been conventionally understood in terms of the interactions among discrete and homogeneous cell types. This approach has proven difficult in neuroscience due to the marked diversity across different neuron classes, but it may be further hampered by prominent within-class variability. Here, we considered a well-defined canonical neuronal population-hippocampal CA1 pyramidal cells (CA1 PCs)-and systematically examined the extent and spatial rules of transcriptional heterogeneity. Using next-generation RNA sequencing, we identified striking variability in CA1 PCs, such that the differences within CA1 along the dorsal-ventral axis rivaled differences across distinct pyramidal neuron classes. This variability emerged from a spectrum of continuous gene-expression gradients, producing a transcriptional profile consistent with a multifarious continuum of cells. This work reveals an unexpected amount of variability within a canonical and narrowly defined neuronal population and suggests that continuous, within-class heterogeneity may be an important feature of neural circuits.

    View Publication Page
    01/16/16 | Imaging transcription: past, present, and future.
    Coleman RA, Liu Z, Darzacq X, Tjian R, Singer RH, Lionnet T
    Cold Spring Harbor Symposia on Quantitative Biology. 2015;80:1-8. doi: 10.1101/sqb.2015.80.027201

    Transcription, the first step of gene expression, is exquisitely regulated in higher eukaryotes to ensure correct development and homeostasis. Traditional biochemical, genetic, and genomic approaches have proved successful at identifying factors, regulatory sequences, and potential pathways that modulate transcription. However, they typically only provide snapshots or population averages of the highly dynamic, stochastic biochemical processes involved in transcriptional regulation. Single-molecule live-cell imaging has, therefore, emerged as a complementary approach capable of circumventing these limitations. By observing sequences of molecular events in real time as they occur in their native context, imaging has the power to derive cause-and-effect relationships and quantitative kinetics to build predictive models of transcription. Ongoing progress in fluorescence imaging technology has brought new microscopes and labeling technologies that now make it possible to visualize and quantify the transcription process with single-molecule resolution in living cells and animals. Here we provide an overview of the evolution and current state of transcription imaging technologies. We discuss some of the important concepts they uncovered and present possible future developments that might solve long-standing questions in transcriptional regulation.

    View Publication Page
    Egnor Lab
    01/11/16 | The contribution of ultrasonic vocalizations to mouse courtship.
    Egnor SR, Seagraves KM
    Current Opinion in Neurobiology. 2016 Jan 11;38:1-5. doi: 10.1016/j.conb.2015.12.009

    Vocalizations transmit information to social partners, and mice use these signals to exchange information during courtship. Ultrasonic vocalizations from adult males are tightly associated with their interactions with females, and vary as a function of male quality. Work in the last decade has established that the spectrotemporal features of male vocalizations are not learned, but that female attention toward specific vocal features is modified by social experience. Additionally, progress has been made on elucidating how mouse vocalizations are encoded in the auditory system, and on the olfactory circuits that trigger their production. Together these findings provide us with important insights into how vocal communication can contribute to social interactions.

    View Publication Page
    01/07/16 | Adaptive and background-aware GAL4 expression enhancement of co-registered confocal microscopy images.
    Trapp M, Schulze F, Novikov AA, Tirian L, J Dickson B, Bühler K
    Neuroinformatics. 2016 Jan 7;14(2):221-33. doi: 10.1007/s12021-015-9289-y

    GAL4 gene expression imaging using confocal microscopy is a common and powerful technique used to study the nervous system of a model organism such as Drosophila melanogaster. Recent research projects focused on high throughput screenings of thousands of different driver lines, resulting in large image databases. The amount of data generated makes manual assessment tedious or even impossible. The first and most important step in any automatic image processing and data extraction pipeline is to enhance areas with relevant signal. However, data acquired via high throughput imaging tends to be less then ideal for this task, often showing high amounts of background signal. Furthermore, neuronal structures and in particular thin and elongated projections with a weak staining signal are easily lost. In this paper we present a method for enhancing the relevant signal by utilizing a Hessian-based filter to augment thin and weak tube-like structures in the image. To get optimal results, we present a novel adaptive background-aware enhancement filter parametrized with the local background intensity, which is estimated based on a common background model. We also integrate recent research on adaptive image enhancement into our approach, allowing us to propose an effective solution for known problems present in confocal microscopy images. We provide an evaluation based on annotated image data and compare our results against current state-of-the-art algorithms. The results show that our algorithm clearly outperforms the existing solutions.

    View Publication Page
    01/07/16 | The soft touch: low-affinity transcription factor binding sites in development and evolution.
    Crocker J, Preger-Ben Noon E, Stern DL
    Current Topics in Developmental Biology. 2016 Jan 07:. doi: 10.1016/bs.ctdb.2015.11.018

    Transcription factor proteins regulate gene expression by binding to specific DNA regions. Most studies of transcription factor binding sites have focused on the highest affinity sites for each factor. There is abundant evidence, however, that binding sites with a range of affinities, including very low affinities, are critical to gene regulation. Here, we present the theoretical and experimental evidence for the importance of low-affinity sites in gene regulation and development. We also discuss the implications of the widespread use of low-affinity sites in eukaryotic genomes for robustness, precision, specificity, and evolution of gene regulation.

    View Publication Page
    01/04/16 | The Dfam database of repetitive DNA families.
    Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao W, Smit AF, Wheeler TJ
    Nucleic Acids Research. 2016 Jan 4;44(D1):D81-9. doi: 10.1093/nar/gkv1272

    Repetitive DNA, especially that due to transposable elements (TEs), makes up a large fraction of many genomes. Dfam is an open access database of families of repetitive DNA elements, in which each family is represented by a multiple sequence alignment and a profile hidden Markov model (HMM). The initial release of Dfam, featured in the 2013 NAR Database Issue, contained 1143 families of repetitive elements found in humans, and was used to produce more than 100 Mb of additional annotation of TE-derived regions in the human genome, with improved speed. Here, we describe recent advances, most notably expansion to 4150 total families including a comprehensive set of known repeat families from four new organisms (mouse, zebrafish, fly and nematode). We describe improvements to coverage, and to our methods for identifying and reducing false annotation. We also describe updates to the website interface. The Dfam website has moved to http://dfam.org. Seed alignments, profile HMMs, hit lists and other underlying data are available for download.

    View Publication Page
    Singer Lab
    01/01/16 | Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes.
    Katz ZB, English BP, Lionnet T, Yoon YJ, Monnier N, Ovryn B, Bathe M, Singer RH
    eLife. 2016;5:. doi: 10.7554/eLife.10415

    Messenger RNA localization is important for cell motility by local protein translation. However, while single mRNAs can be imaged and their movements tracked in single cells, it has not yet been possible to determine whether these mRNAs are actively translating. Therefore, we imaged single β-actin mRNAs tagged with MS2 stem loops colocalizing with labeled ribosomes to determine when polysomes formed. A dataset of tracking information consisting of thousands of trajectories per cell demonstrated that mRNAs co-moving with ribosomes have significantly different diffusion properties from non-translating mRNAs that were exposed to translation inhibitors. These data indicate that ribosome load changes mRNA movement and therefore highly translating mRNAs move slower. Importantly, β-actin mRNA near focal adhesions exhibited sub-diffusive corralled movement characteristic of increased translation. This method can identify where ribosomes become engaged for local protein production and how spatial regulation of mRNA-protein interactions mediates cell directionality.

    View Publication Page