Filter
Associated Lab
- Betzig Lab (2) Apply Betzig Lab filter
- Chklovskii Lab (4) Apply Chklovskii Lab filter
- Eddy/Rivas Lab (6) Apply Eddy/Rivas Lab filter
- Fetter Lab (2) Apply Fetter Lab filter
- Hess Lab (2) Apply Hess Lab filter
- Jayaraman Lab (1) Apply Jayaraman Lab filter
- Leonardo Lab (1) Apply Leonardo Lab filter
- Looger Lab (7) Apply Looger Lab filter
- Magee Lab (3) Apply Magee Lab filter
- Menon Lab (1) Apply Menon Lab filter
- Reiser Lab (1) Apply Reiser Lab filter
- Riddiford Lab (4) Apply Riddiford Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Schreiter Lab (2) Apply Schreiter Lab filter
- Shroff Lab (2) Apply Shroff Lab filter
- Simpson Lab (1) Apply Simpson Lab filter
- Spruston Lab (1) Apply Spruston Lab filter
- Sternson Lab (1) Apply Sternson Lab filter
- Svoboda Lab (8) Apply Svoboda Lab filter
- Truman Lab (2) Apply Truman Lab filter
Associated Support Team
Publication Date
- December 2009 (5) Apply December 2009 filter
- November 2009 (2) Apply November 2009 filter
- October 2009 (7) Apply October 2009 filter
- September 2009 (3) Apply September 2009 filter
- August 2009 (2) Apply August 2009 filter
- July 2009 (7) Apply July 2009 filter
- June 2009 (4) Apply June 2009 filter
- May 2009 (4) Apply May 2009 filter
- April 2009 (2) Apply April 2009 filter
- March 2009 (5) Apply March 2009 filter
- February 2009 (4) Apply February 2009 filter
- January 2009 (11) Apply January 2009 filter
- Remove 2009 filter 2009
56 Janelia Publications
Showing 31-40 of 56 resultsSUMMARY: INFERNAL builds consensus RNA secondary structure profiles called covariance models (CMs), and uses them to search nucleic acid sequence databases for homologous RNAs, or to create new sequence- and structure-based multiple sequence alignments. AVAILABILITY: Source code, documentation and benchmark downloadable from http://infernal.janelia.org. INFERNAL is freely licensed under the GNU GPLv3 and should be portable to any POSIX-compliant operating system, including Linux and Mac OS/X.
Accuracy of automated structural RNA alignment is improved by using models that consider not only primary sequence but also secondary structure information. However, current RNA structural alignment approaches tend to perform poorly on incomplete sequence fragments, such as single reads from metagenomic environmental surveys, because nucleotides that are expected to be base paired are missing.
Protein kinase A (PKA) plays multiple roles in neurons. The localization and specificity of PKA are largely controlled by A-kinase anchoring proteins (AKAPs). However, the dynamics of PKA in neurons and the roles of specific AKAPs are poorly understood. We imaged the distribution of type II PKA in hippocampal and cortical layer 2/3 pyramidal neurons in vitro and in vivo. PKA was concentrated in dendritic shafts compared to the soma, axons, and dendritic spines. This spatial distribution was imposed by the microtubule-binding protein MAP2, indicating that MAP2 is the dominant AKAP in neurons. Following cAMP elevation, catalytic subunits dissociated from the MAP2-tethered regulatory subunits and rapidly became enriched in nearby spines. The spatial gradient of type II PKA between dendritic shafts and spines was critical for the regulation of synaptic strength and long-term potentiation. Therefore, the localization and activity-dependent translocation of type II PKA are important determinants of PKA function.
The distinct electrical properties of axonal and dendritic membranes are largely a result of specific transport of vesicle-bound membrane proteins to each compartment. How this specificity arises is unclear because kinesin motors that transport vesicles cannot autonomously distinguish dendritically projecting microtubules from those projecting axonally. We hypothesized that interaction with a second motor might enable vesicles containing dendritic proteins to preferentially associate with dendritically projecting microtubules and avoid those that project to the axon. Here we show that in rat cortical neurons, localization of several distinct transmembrane proteins to dendrites is dependent on specific myosin motors and an intact actin network. Moreover, fusion with a myosin-binding domain from Melanophilin targeted Channelrhodopsin-2 specifically to the somatodendritic compartment of neurons in mice in vivo. Together, our results suggest that dendritic transmembrane proteins direct the vesicles in which they are transported to avoid the axonal compartment through interaction with myosin motors.
Input comparison is thought to occur in many neuronal circuits, including the hippocampus, where functionally important interactions between the Schaffer collateral and perforant pathways have been hypothesized. We investigated this idea using multisite, whole-cell recordings and Ca2+ imaging and found that properly timed, repetitive stimulation of both pathways results in the generation of large plateau potentials in distal dendrites of CA1 pyramidal neurons. These dendritic plateau potentials produce widespread Ca2+ influx, large after-depolarizations, burst firing output, and long-term potentiation of perforant path synapses. Plateau duration is directly related to the strength and temporal overlap of pathway activation and involves back-propagating action potentials and both NMDA receptors and voltage-gated Ca2+ channels. Thus, the occurrence of highly correlated SC and PP input to CA1 is signaled by a dramatic change in output mode and an increase in input efficacy, all induced by a large plateau potential in the distal dendrites of CA1 pyramidal neurons.
Many insect developmental color changes are known to be regulated by both ecdysone and juvenile hormone. Yet the molecular mechanisms underlying this regulation have not been well understood. This review highlights the hormonal mechanisms involved in the regulation of two key enzymes [dopa decarboxylase (DDC) and phenoloxidase] necessary for insect cuticular melanization, and the molecular action of 20-hydroxyecdysone on various transcription factors leading to DDC expression at the end of a larval molt in Manduca sexta. In addition, the ecdysone cascade found in M. sexta is compared with that of other organisms.
A low-contrast spot that activates just one ganglion cell in the retina is detected in the spike train of the cell with about the same sensitivity as it is detected behaviorally. This is consistent with Barlow’s proposal that the ganglion cell and later stages of spiking neurons transfer information essentially without loss. Yet, when losses of sensitivity by all preneural factors are accounted for, predicted sensitivity near threshold is considerably greater than behavioral sensitivity, implying that somewhere in the brain information is lost. We hypothesized that the losses occur mainly in the retina, where graded signals are processed by analog circuits that transfer information at high rates and low metabolic cost. To test this, we constructed a model that included all preneural losses for an in vitro mammalian retina, and evaluated the model to predict sensitivity at the cone output. Recording graded responses postsynaptic to the cones (from the type A horizontal cell) and comparing to predicted preneural sensitivity, we found substantial loss of sensitivity (4.2-fold) across the first visual synapse. Recording spike responses from brisk-transient ganglion cells stimulated with the same spot, we found a similar loss (3.5-fold) across the second synapse. The total retinal loss approximated the known overall loss, supporting the hypothesis that from stimulus to perception, most loss near threshold is retinal.
The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca2+-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.
Understanding molecular-scale architecture of cells requires determination of 3D locations of specific proteins with accuracy matching their nanometer-length scale. Existing electron and light microscopy techniques are limited either in molecular specificity or resolution. Here, we introduce interferometric photoactivated localization microscopy (iPALM), the combination of photoactivated localization microscopy with single-photon, simultaneous multiphase interferometry that provides sub-20-nm 3D protein localization with optimal molecular specificity. We demonstrate measurement of the 25-nm microtubule diameter, resolve the dorsal and ventral plasma membranes, and visualize the arrangement of integrin receptors within endoplasmic reticulum and adhesion complexes, 3D protein organization previously resolved only by electron microscopy. iPALM thus closes the gap between electron tomography and light microscopy, enabling both molecular specification and resolution of cellular nanoarchitecture.
In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is critical, however, for both basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brainwide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brainwide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open-access data repository; compatibility with existing resources; and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.