Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

8 Janelia Publications

Showing 1-8 of 8 results
Your Criteria:
    Menon Lab
    11/24/11 | Multi-scale correlation structure of gene expression in the brain.
    Hawrylycz M, Ng L, Page D, Morris J, Lau C, Faber S, Faber V, Sunkin S, Menon V, Lein E, Jones A
    Neural networks : the official journal of the International Neural Network Society. 2011 Nov;24(9):933-42. doi: 10.1016/j.neunet.2011.06.012

    The mammalian brain is best understood as a multi-scale hierarchical neural system, in the sense that connection and function occur on multiple scales from micro to macro. Modern genomic-scale expression profiling can provide insight into methodologies that elucidate this architecture. We present a methodology for understanding the relationship of gene expression and neuroanatomy based on correlation between gene expression profiles across tissue samples. A resulting tool, NeuroBlast, can identify networks of genes co-expressed within or across neuroanatomic structures. The method applies to any data modality that can be mapped with sufficient spatial resolution, and provides a computation technique to elucidate neuroanatomy via patterns of gene expression on spatial and temporal scales. In addition, from the perspective of spatial location, we discuss a complementary technique that identifies gene classes that contribute to defining anatomic patterns.

    View Publication Page
    11/18/11 | Facile and general synthesis of photoactivatable xanthene dyes.
    Wysocki LM, Grimm JB, Tkachuk AN, Brown TA, Betzig E, Lavis LD
    Angewandte Chemie. 2011 Nov 18;50:11206-9. doi: 10.1002/anie.201104571

    Despite the apparent simplicity of the xanthene fluorophores, the preparation of caged derivatives with free carboxy groups remains a synthetic challenge. A straightforward and flexible strategy for preparing rhodamine and fluorescein derivatives was developed using reduced, “leuco” intermediates.

    View Publication Page
    Eddy/Rivas Lab
    11/15/11 | Fast filtering for RNA homology search.
    Kolbe DL, Eddy SR
    Bioinformatics. 2011 Nov 15;27(22):3102-9. doi: 10.1093/bioinformatics/btr545

    MOTIVATION: Homology search for RNAs can use secondary structure information to increase power by modeling base pairs, as in covariance models, but the resulting computational costs are high. Typical acceleration strategies rely on at least one filtering stage using sequence-only search. RESULTS: Here we present the multi-segment CYK (MSCYK) filter, which implements a heuristic of ungapped structural alignment for RNA homology search. Compared to gapped alignment, this approximation has lower computation time requirements (O(N⁴) reduced to O(N³), and space requirements (O(N³) reduced to O(N²). A vector-parallel implementation of this method gives up to 100-fold speed-up; vector-parallel implementations of standard gapped alignment at two levels of precision give 3- and 6-fold speed-ups. These approaches are combined to create a filtering pipeline that scores RNA secondary structure at all stages, with results that are synergistic with existing methods.

    View Publication Page
    Bock Lab
    11/09/11 | Large-scale automated histology in the pursuit of connectomes.
    Kleinfeld D, Bharioke A, Blinder P, Bock DD, Briggman KL, Chklovskii DB, Denk W, Helmstaedter M, Kaufhold JP, Lee WA, Meyer HS, Micheva KD, Oberlaender M, Prohaska S, Reid RC, Smith SJ, Takemura S, Tsai PS, Sakmann B
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2011 Nov 9;31(45):16125-38. doi: 10.1523/JNEUROSCI.4077-11.2011

    How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain’s computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.

    View Publication Page
    11/01/11 | A computational statistics approach for estimating the spatial range of morphogen gradients.
    Kanodia JS, Kim Y, Tomer R, Khan Z, Chung K, Storey JD, Lu H, Keller PJ, Shvartsman SY
    Development. 2011 Nov;138(22):4867-74. doi: 10.1242/dev.071571

    A crucial issue in studies of morphogen gradients relates to their range: the distance over which they can act as direct regulators of cell signaling, gene expression and cell differentiation. To address this, we present a straightforward statistical framework that can be used in multiple developmental systems. We illustrate the developed approach by providing a point estimate and confidence interval for the spatial range of the graded distribution of nuclear Dorsal, a transcription factor that controls the dorsoventral pattern of the Drosophila embryo.

    View Publication Page
    Looger LabSchreiter Lab
    11/01/11 | A genetically encoded, high-signal-to-noise maltose sensor.
    Marvin JS, Schreiter ER, Echevarría IM, Looger LL
    Proteins. 2011 Nov;79:3025-36. doi: 10.1002/prot.23118

    We describe the generation of a family of high-signal-to-noise single-wavelength genetically encoded indicators for maltose. This was achieved by insertion of circularly permuted fluorescent proteins into a bacterial periplasmic binding protein (PBP), Escherichia coli maltodextrin-binding protein, resulting in a four-color family of maltose indicators. The sensors were iteratively optimized to have sufficient brightness and maltose-dependent fluorescence increases for imaging, under both one- and two-photon illumination. We demonstrate that maltose affinity of the sensors can be tuned in a fashion largely independent of the fluorescent readout mechanism. Using literature mutations, the binding specificity could be altered to moderate sucrose preference, but with a significant loss of affinity. We use the soluble sensors in individual E. coli bacteria to observe rapid maltose transport across the plasma membrane, and membrane fusion versions of the sensors on mammalian cells to visualize the addition of maltose to extracellular media. The PBP superfamily includes scaffolds specific for a number of analytes whose visualization would be critical to the reverse engineering of complex systems such as neural networks, biosynthetic pathways, and signal transduction cascades. We expect the methodology outlined here to be useful in the development of indicators for many such analytes.

    View Publication Page
    Menon Lab
    11/01/11 | Frozen tissue can provide reproducible proteomic results of subcellular fractionation.
    Lim J, Menon V, Bitzer M, Miller LM, Madrid-Aliste C, Weiss LM, Fiser A, Angeletti RH
    Analytical biochemistry. 2011 Nov 1;418(1):78-84. doi: 10.1016/j.ab.2011.06.045

    Differential detergent fractionation (DDF) is frequently used to partition fresh cells and tissues into distinct compartments. We have tested whether DDF can reproducibly extract and fractionate cellular protein components from frozen tissues. Frozen kidneys were sequentially extracted with three different buffer systems. Analysis of the three fractions with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1693 proteins, some of which were common to all fractions and others of which were unique to specific fractions. Normalized spectral index (SI(N)) values obtained from these data were compared to evaluate both the reproducibility of the method and the efficiency of enrichment. SI(N) values between replicate fractions demonstrated a high correlation, confirming the reproducibility of the method. Correlation coefficients across the three fractions were significantly lower than those for the replicates, supporting the capability of DDF to differentially fractionate proteins into separate compartments. Subcellular annotation of the proteins identified in each fraction demonstrated a significant enrichment of cytoplasmic, cell membrane, and nuclear proteins in the three respective buffer system fractions. We conclude that DDF can be applied to frozen tissue to generate reproducible proteome coverage discriminating subcellular compartments. This demonstrates the feasibility of analyzing cellular compartment-specific proteins in archived tissue samples with the simple DDF method.

    View Publication Page
    11/01/11 | Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination.
    Milkie DE, Betzig E, Ji N
    Optics Letters. 2011 Nov 1;36(21):4206-8. doi: 10.1364/OL.36.004206

    Optical aberrations deteriorate the performance of microscopes. Adaptive optics can be used to improve imaging performance via wavefront shaping. Here, we demonstrate a pupil-segmentation based adaptive optical approach with full-pupil illumination. When implemented in a two-photon fluorescence microscope, it recovers diffraction-limited performance and improves imaging signal and resolution.

    View Publication Page