Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

6 Janelia Publications

Showing 1-6 of 6 results
Your Criteria:
    Sternson LabLooger LabLavis Lab
    03/27/12 | Selective esterase-ester pair for targeting small molecules with cellular specificity.
    Tian L, Yang Y, Wysocki LM, Arnold AC, Hu A, Ravichandran B, Sternson SM, Looger LL, Lavis LD
    Proceedings of the National Academy of Sciences of the United States of America. 2012 Mar 27;109:4756-61. doi: 10.1073/pnas.1111943109

    Small molecules are important tools to measure and modulate intracellular signaling pathways. A longstanding limitation for using chemical compounds in complex tissues has been the inability to target bioactive small molecules to a specific cell class. Here, we describe a generalizable esterase-ester pair capable of targeted delivery of small molecules to living cells and tissue with cellular specificity. We used fluorogenic molecules to rapidly identify a small ester masking motif that is stable to endogenous esterases, but is efficiently removed by an exogenous esterase. This strategy allows facile targeting of dyes and drugs in complex biological environments to label specific cell types, illuminate gap junction connectivity, and pharmacologically perturb distinct subsets of cells. We expect this approach to have general utility for the specific delivery of many small molecules to defined cellular populations.

    View Publication Page
    03/16/12 | Sexual deprivation increases ethanol intake in Drosophila.
    Shohat-Ophir G, Kaun K, Azanchi R, Mohammed H, Heberlein U
    Science. 2012 Mar 16;335(6074):1351-5. doi: 10.1126/science.1215932

    The brain’s reward systems reinforce behaviors required for species survival, including sex, food consumption, and social interaction. Drugs of abuse co-opt these neural pathways, which can lead to addiction. Here, we used Drosophila melanogaster to investigate the relationship between natural and drug rewards. In males, mating increased, whereas sexual deprivation reduced, neuropeptide F (NPF) levels. Activation or inhibition of the NPF system in turn reduced or enhanced ethanol preference. These results thus link sexual experience, NPF system activity, and ethanol consumption. Artificial activation of NPF neurons was in itself rewarding and precluded the ability of ethanol to act as a reward. We propose that activity of the NPF-NPF receptor axis represents the state of the fly reward system and modifies behavior accordingly.

    View Publication Page
    03/15/12 | Cutting edge: the role of IFN-α receptor and MyD88 signaling in induction of IL-15 expression in vivo.
    Colpitts SL, Stoklasek TA, Plumlee CR, Obar JJ, Guo C, Lefran\c cois L
    Journal of Immunology. 2012 Mar 15;188(6):2483-7. doi: 10.4049/jimmunol.1103609

    IL-15 plays a multifaceted role in immune homeostasis, but the unreliability of IL-15 detection has stymied exploration of IL-15 regulation in vivo. To visualize IL-15 expression, we created a transgenic mouse expressing emerald-GFP (EmGFP) under IL-15 promoter control. EmGFP/IL-15 was prevalent in innate cells including dendritic cells (DCs), macrophages, and monocytes. However, DC subsets expressed varying levels of EmGFP/IL-15 with CD8(+) DCs constitutively expressing EmGFP/IL-15 and CD8(-) DCs expressing low EmGFP/IL-15 levels. Virus infection resulted in IL-15 upregulation in both subsets. By crossing the transgenic mice to mice deficient in specific elements of innate signaling, we found a cell-intrinsic dependency of DCs and Ly6C(+) monocytes on IFN-α receptor expression for EmGFP/IL-15 upregulation after vesicular stomatitis virus infection. In contrast, myeloid cells did not require the expression of MyD88 to upregulate EmGFP/IL-15 expression. These findings provide evidence of previously unappreciated regulation of IL-15 expression in myeloid lineages during homeostasis and following infection.

    View Publication Page
    03/09/12 | Triggering a cell shape change by exploiting preexisting actomyosin contractions.
    Roh-Johnson M, Shemer G, Higgins CD, McClellan JH, Werts AD, Tulu US, Gao L, Betzig E, Kiehart DP, Goldstein B
    Science. 2012 Mar 9;335(6073):1232-5. doi: 10.1126/science.1217869

    Apical constriction changes cell shapes, driving critical morphogenetic events, including gastrulation in diverse organisms and neural tube closure in vertebrates. Apical constriction is thought to be triggered by contraction of apical actomyosin networks. We found that apical actomyosin contractions began before cell shape changes in both Caenorhabitis elegans and Drosophila. In C. elegans, actomyosin networks were initially dynamic, contracting and generating cortical tension without substantial shrinking of apical surfaces. Apical cell-cell contact zones and actomyosin only later moved increasingly in concert, with no detectable change in actomyosin dynamics or cortical tension. Thus, apical constriction appears to be triggered not by a change in cortical tension, but by dynamic linking of apical cell-cell contact zones to an already contractile apical cortex.

    View Publication Page
    03/01/12 | An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.
    McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P
    The ISME Journal. 2012 Mar;6(3):610-8. doi: 10.1038/ismej.2011.139

    Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a ’taxonomy to tree’ approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408 315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/.

    View Publication Page
    Pastalkova Lab
    03/01/12 | Implantable blood pressure monitoring cuff for small laboratory animal.
    Pais R, Duttaroy A, Wolever J, Dobbs M, Pastalkova E
    Microsystems for Measurement and Instrumentation (MAMNA), 2012. 2012 Mar:. doi: 10.1109/MAMNA.2012.6195099

    Continuous monitoring of blood pressure in laboratory animals is necessary to understand the effect of treatments for cardiovascular related conditions, such as hypertension. Current methods to measure laboratory rat blood pressure require the animal to be constrained. Our proposed method is a small implantable device which fits around the carotid artery of the rat. Initial data from a mock rat artery setup, with equivalent artery pressure as found in the rat, show that the cuff design effectively detects the pressure change inside the mock artery.

    View Publication Page