Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

10 Janelia Publications

Showing 1-10 of 10 results
Your Criteria:
    11/26/13 | Imaging the transcriptome.
    Lionnet T
    Molecular Systems Biology. 2013 Nov 26;9:710. doi: 10.1038/msb.2013.67
    Svoboda Lab
    11/19/13 | Tapered whiskers are required for active tactile sensation.
    Hires SA, Pammer L, Svoboda K, Golomb D
    eLife. 2013 Nov 19;2:e01350. doi: 10.7554/eLife.01350

    Many mammals forage and burrow in dark constrained spaces. Touch through facial whiskers is important during these activities, but the close quarters makes whisker deployment challenging. The diverse shapes of facial whiskers reflect distinct ecological niches. Rodent whiskers are conical, often with a remarkably linear taper. Here we use theoretical and experimental methods to analyze interactions of mouse whiskers with objects. When pushed into objects, conical whiskers suddenly slip at a critical angle. In contrast, cylindrical whiskers do not slip for biologically plausible movements. Conical whiskers sweep across objects and textures in characteristic sequences of brief sticks and slips, which provide information about the tactile world. In contrast, cylindrical whiskers stick and remain stuck, even when sweeping across fine textures. Thus the conical whisker structure is adaptive for sensor mobility in constrained environments and in feature extraction during active haptic exploration of objects and surfaces. DOI: http://dx.doi.org/10.7554/eLife.01350.001.

    View Publication Page
    Gonen Lab
    11/19/13 | Three-dimensional electron crystallography of protein microcrystals.
    Shi D, Nannenga BL, Iadanza MG, Gonen T
    eLife. 2013 Nov 19;2:01345. doi: 10.7554/eLife.01345

    We demonstrate that it is feasible to determine high-resolution protein structures by electron crystallography of three-dimensional crystals in an electron cryo-microscope (CryoEM). Lysozyme microcrystals were frozen on an electron microscopy grid, and electron diffraction data collected to 1.7 Å resolution. We developed a data collection protocol to collect a full-tilt series in electron diffraction to atomic resolution. A single tilt series contains up to 90 individual diffraction patterns collected from a single crystal with tilt angle increment of 0.1–1° and a total accumulated electron dose less than 10 electrons per angstrom squared. We indexed the data from three crystals and used them for structure determination of lysozyme by molecular replacement followed by crystallographic refinement to 2.9 Å resolution. This proof of principle paves the way for the implementation of a new technique, which we name ‘MicroED’, that may have wide applicability in structural biology.

    View Publication Page
    11/14/13 | Motor control of Drosophila courtship song.
    Shirangi TR, Stern DL, Truman JW
    Cell Reports. 2013 Nov 14;5:678-86. doi: 10.1016/j.celrep.2013.09.039

    Many animals utilize acoustic signals-or songs-to attract mates. During courtship, Drosophila melanogaster males vibrate a wing to produce trains of pulses and extended tone, called pulse and sine song, respectively. Courtship songs in the genus Drosophila are exceedingly diverse, and different song features appear to have evolved independently of each other. How the nervous system allows such diversity to evolve is not understood. Here, we identify a wing muscle in D. melanogaster (hg1) that is uniquely male-enlarged. The hg1 motoneuron and the sexually dimorphic development of the hg1 muscle are required specifically for the sine component of the male song. In contrast, the motoneuron innervating a sexually monomorphic wing muscle, ps1, is required specifically for a feature of pulse song. Thus, individual wing motor pathways can control separate aspects of courtship song and may provide a "modular" anatomical substrate for the evolution of diverse songs.

    View Publication Page
    Svoboda LabHarris LabFetter Lab
    11/12/13 | Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography.
    Rah J, Bas E, Colonell J, Mishchenko Y, Karsh B, Fetter RD, Myers EW, Chklovskii DB, Svoboda K, Harris TD, Isaac JT
    Frontiers in Neural Circuits. 2013;7:177. doi: 10.3389/fncir.2013.00177

    The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT), a high-resolution optical microscopy method, to examine thalamocortical (TC) input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC synapses in layer 4. We then use large-scale array tomography (LSAT) to measure TC synapse distribution on L5 pyramidal neurons in a 1.00 × 0.83 × 0.21 mm(3) volume of mouse somatosensory cortex. We found that TC synapses primarily target basal dendrites in layer 5, but also make a considerable input to proximal apical dendrites in L4, consistent with previous work. Our analysis further suggests that TC inputs are biased toward certain branches and, within branches, synapses show significant clustering with an excess of TC synapse nearest neighbors within 5-15 μm compared to a random distribution. Thus, we show that AT is a sensitive and quantitative method to map specific types of synaptic input on the dendrites of entire neurons. We anticipate that this technique will be of wide utility for mapping functionally-relevant anatomical connectivity in neural circuits.

    View Publication Page
    Magee Lab
    11/06/13 | Imaging neuronal populations in behaving rodents: paradigms for studying neural circuits underlying behavior in the mammalian cortex.
    Chen JL, Andermann ML, Keck T, Xu N, Ziv Y
    The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. 2013 Nov 6;33(45):17631-40. doi: 10.1523/JNEUROSCI.3255-13.2013

    Understanding the neural correlates of behavior in the mammalian cortex requires measurements of activity in awake, behaving animals. Rodents have emerged as a powerful model for dissecting the cortical circuits underlying behavior attributable to the convergence of several methods. Genetically encoded calcium indicators combined with viral-mediated or transgenic tools enable chronic monitoring of calcium signals in neuronal populations and subcellular structures of identified cell types. Stable one- and two-photon imaging of neuronal activity in awake, behaving animals is now possible using new behavioral paradigms in head-fixed animals, or using novel miniature head-mounted microscopes in freely moving animals. This mini-symposium will highlight recent applications of these methods for studying sensorimotor integration, decision making, learning, and memory in cortical and subcortical brain areas. We will outline future prospects and challenges for identifying the neural underpinnings of task-dependent behavior using cellular imaging in rodents.

    View Publication Page
    Gonen Lab
    11/05/13 | Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation.
    Smith FD, Reichow SL, Esseltine JL, Shi D, Langeberg LK, Scott JD, Gonen T
    eLife. 2013 Nov 5;2:e01319. doi: 10.7554/eLife.01319

    Anchoring proteins sequester kinases with their substrates to locally disseminate intracellular signals and avert indiscriminate transmission of these responses throughout the cell. Mechanistic understanding of this process is hampered by limited structural information on these macromolecular complexes. A-kinase anchoring proteins (AKAPs) spatially constrain phosphorylation by cAMP-dependent protein kinases (PKA). Electron microscopy and three-dimensional reconstructions of type-II PKA-AKAP18γ complexes reveal hetero-pentameric assemblies that adopt a range of flexible tripartite configurations. Intrinsically disordered regions within each PKA regulatory subunit impart the molecular plasticity that affords an \~{}16 nanometer radius of motion to the associated catalytic subunits. Manipulating flexibility within the PKA holoenzyme augmented basal and cAMP responsive phosphorylation of AKAP-associated substrates. Cell-based analyses suggest that the catalytic subunit remains within type-II PKA-AKAP18γ complexes upon cAMP elevation. We propose that the dynamic movement of kinase sub-structures, in concert with the static AKAP-regulatory subunit interface, generates a solid-state signaling microenvironment for substrate phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.01319.001.

    View Publication Page
    Riddiford Lab
    11/05/13 | Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster.
    Bilen J, Atallah J, Azanchi R, Levine JD, Riddiford LM
    Proceedings of the National Academy of Sciences of the United States of America. 2013 Nov 5;110:18321-6. doi: 10.1073/pnas.1318119110

    Juvenile hormone (JH) coordinates timing of female reproductive maturation in most insects. In Drosophila melanogaster, JH plays roles in both mating and egg maturation. However, very little is known about the molecular pathways associated with mating. Our behavioral analysis of females genetically lacking the corpora allata, the glands that produce JH, showed that they were courted less by males and mated later than control females. Application of the JH mimic, methoprene, to the allatectomized females just after eclosion rescued both the male courtship and the mating delay. Our studies of the null mutants of the JH receptors, Methoprene tolerant (Met) and germ cell-expressed (gce), showed that lack of Met in Met(27) females delayed the onset of mating, whereas lack of Gce had little effect. The Met(27) females were shown to be more attractive but less behaviorally receptive to copulation attempts. The behavioral but not the attractiveness phenotype was rescued by the Met genomic transgene. Analysis of the female cuticular hydrocarbon profiles showed that corpora allata ablation caused a delay in production of the major female-specific sex pheromones (the 7,11-C27 and -C29 dienes) and a change in the cuticular hydrocarbon blend. In the Met(27) null mutant, by 48 h, the major C27 diene was greatly increased relative to wild type. In contrast, the gce(2.5k) null mutant females were courted similarly to control females despite changes in certain cuticular hydrocarbons. Our findings indicate that JH acts primarily via Met to modulate the timing of onset of female sex pheromone production and mating.

    View Publication Page
    Ji Lab

    Inherent aberrations of gradient index (GRIN) lenses used in fluorescence endomicroscopes deteriorate imaging performance. Using adaptive optics, we characterized and corrected the on-axis and off-axis aberrations of a GRIN lens with NA 0.8 at multiple focal planes. We demonstrated a rotational-transformation-based correction procedure, which enlarged the imaging area with diffraction-limited resolution with only two aberration measurements. 204.8 × 204.8 µm2 images of fluorescent beads and brain slices before and after AO corrections were obtained, with evident improvements in both image sharpness and brightness after AO correction. These results show great promises of applying adaptive optical two-photon fluorescence endomicroscope to three-dimensional (3D) imaging.

    View Publication Page
    11/01/13 | Caged naloxone reveals opioid signaling deactivation kinetics.
    Banghart MR, Williams JT, Shah RC, Lavis LD, Sabatini BL
    Molecular Pharmacology. 2013 Nov;84(5):687-95. doi: 10.1124/mol.113.088096

    The spatiotemporal dynamics of opioid signaling in the brain remain poorly defined. Photoactivatable opioid ligands provide a means to quantitatively measure these dynamics and their underlying mechanisms in brain tissue. Although activation kinetics can be assessed using caged agonists, deactivation kinetics are obscured by slow clearance of agonist in tissue. To reveal deactivation kinetics of opioid signaling we developed a caged competitive antagonist that can be quickly photoreleased in sufficient concentrations to render agonist dissociation effectively irreversible. Carboxynitroveratryl-naloxone (CNV-NLX), a caged analog of the competitive opioid antagonist NLX, was readily synthesized from commercially available NLX in good yield and found to be devoid of antagonist activity at heterologously expressed opioid receptors. Photolysis in slices of rat locus coeruleus produced a rapid inhibition of the ionic currents evoked by multiple agonists of the μ-opioid receptor (MOR), but not of α-adrenergic receptors, which activate the same pool of ion channels. Using the high-affinity peptide agonist dermorphin, we established conditions under which light-driven deactivation rates are independent of agonist concentration and thus intrinsic to the agonist-receptor complex. Under these conditions, some MOR agonists yielded deactivation rates that are limited by G protein signaling, whereas others appeared limited by agonist dissociation. Therefore, the choice of agonist determines which feature of receptor signaling is unmasked by CNV-NLX photolysis.

    View Publication Page