Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

18 Janelia Publications

Showing 1-10 of 18 results
Your Criteria:
    01/31/17 | A brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and Enkephalins.
    François A, Low SA, Sypek EI, Christensen AJ, Sotoudeh C, Beier KT, Ramakrishnan C, Ritola KD, Sharif-Naeini R, Deisseroth K, Delp SL, Malenka RC, Luo L, Hantman AW, Scherrer G
    Neuron. 2017 Jan 31;93(4):822-39. doi: 10.1016/j.neuron.2017.01.008

    Pain thresholds are, in part, set as a function of emotional and internal states by descending modulation of nociceptive transmission in the spinal cord. Neurons of the rostral ventromedial medulla (RVM) are thought to critically contribute to this process; however, the neural circuits and synaptic mechanisms by which distinct populations of RVM neurons facilitate or diminish pain remain elusive. Here we used in vivo opto/chemogenetic manipulations and trans-synaptic tracing of genetically identified dorsal horn and RVM neurons to uncover an RVM-spinal cord-primary afferent circuit controlling pain thresholds. Unexpectedly, we found that RVM GABAergic neurons facilitate mechanical pain by inhibiting dorsal horn enkephalinergic/GABAergic interneurons. We further demonstrate that these interneurons gate sensory inputs and control pain through temporally coordinated enkephalin- and GABA-mediated presynaptic inhibition of somatosensory neurons. Our results uncover a descending disynaptic inhibitory circuit that facilitates mechanical pain, is engaged during stress, and could be targeted to establish higher pain thresholds.

    View Publication Page
    01/31/17 | Multicut brings automated neurite segmentation closer to human performance.
    Beier T, Pape C, Rahaman N, Prange T, Berg S, Bock DD, Cardona A, Knott GW, Plaza SM, Scheffer LK, Koethe U, Kreshuk A, Hamprecht FA
    Nature Methods. 2017 Jan 31;14(2):101-102. doi: 10.1038/nmeth.4151
    01/30/17 | Axonal Endoplasmic Reticulum Ca(2+) Content Controls Release Probability in CNS Nerve Terminals.
    de Juan-Sanz J, Holt GT, Schreiter ER, de Juan F, Kim DS, Ryan TA
    Neuron. 2017 Jan 30;93(4):867-81. doi: 10.1016/j.neuron.2017.01.010

    Although the endoplasmic reticulum (ER) extends throughout axons and axonal ER dysfunction is implicated in numerous neurological diseases, its role at nerve terminals is poorly understood. We developed novel genetically encoded ER-targeted low-affinity Ca(2+) indicators optimized for examining axonal ER Ca(2+). Our experiments revealed that presynaptic function is tightly controlled by ER Ca(2+) content. We found that neuronal activity drives net Ca(2+) uptake into presynaptic ER although this activity does not contribute significantly to shaping cytosolic Ca(2+) except during prolonged repetitive firing. In contrast, we found that axonal ER acts as an actuator of plasma membrane (PM) function: [Ca(2+)]ER controls STIM1 activation in presynaptic terminals, which results in the local modulation of presynaptic function, impacting activity-driven Ca(2+) entry and release probability. These experiments reveal a critical role of presynaptic ER in the control of neurotransmitter release and will help frame future investigations into the molecular basis of ER-driven neuronal disease states.

    View Publication Page
    01/30/17 | The glia of the adult Drosophila nervous system.
    Kremer MC, Jung C, Batelli S, Rubin GM, Gaul U
    Glia. 2017 Jan 30;65(4):606-38. doi: 10.1002/glia.23115

    Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017.

    View Publication Page
    01/23/17 | Actin dynamics and competition for myosin monomer govern the sequential amplification of myosin filaments.
    Beach JR, Bruun KS, Shao L, Li D, Swider Z, Remmert K, Zhang Y, Conti MA, Adelstein RS, Rusan NM, Betzig E, Hammer JA
    Nature Cell Biology. 2017 Jan 23;19(2):85-93. doi: 10.1038/ncb3463

    The cellular mechanisms governing non-muscle myosin II (NM2) filament assembly are largely unknown. Using EGFP-NM2A knock-in fibroblasts and multiple super-resolution imaging modalities, we characterized and quantified the sequential amplification of NM2 filaments within lamellae, wherein filaments emanating from single nucleation events continuously partition, forming filament clusters that populate large-scale actomyosin structures deeper in the cell. Individual partitioning events coincide spatially and temporally with the movements of diverging actin fibres, suppression of which inhibits partitioning. These and other data indicate that NM2A filaments are partitioned by the dynamic movements of actin fibres to which they are bound. Finally, we showed that partition frequency and filament growth rate in the lamella depend on MLCK, and that MLCK is competing with centrally active ROCK for a limiting pool of monomer with which to drive lamellar filament assembly. Together, our results provide new insights into the mechanism and spatio-temporal regulation of NM2 filament assembly in cells.

    View Publication Page
    Romani LabMagee Lab
    01/23/17 | Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells.
    Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC
    Nature Neuroscience. 2017 Jan 23;20(3):417-26. doi: 10.1038/nn.4486

    Place cells in the CA1 region of the hippocampus express location-specific firing despite receiving a steady barrage of heterogeneously tuned excitatory inputs that should compromise output dynamic range and timing. We examined the role of synaptic inhibition in countering the deleterious effects of off-target excitation. Intracellular recordings in behaving mice demonstrate that bimodal excitation drives place cells, while unimodal excitation drives weaker or no spatial tuning in interneurons. Optogenetic hyperpolarization of interneurons had spatially uniform effects on place cell membrane potential dynamics, substantially reducing spatial selectivity. These data and a computational model suggest that spatially uniform inhibitory conductance enhances rate coding in place cells by suppressing out-of-field excitation and by limiting dendritic amplification. Similarly, we observed that inhibitory suppression of phasic noise generated by out-of-field excitation enhances temporal coding by expanding the range of theta phase precession. Thus, spatially uniform inhibition allows proficient and flexible coding in hippocampal CA1 by suppressing heterogeneously tuned excitation.

    View Publication Page
    01/23/17 | Long-range self-organization of cytoskeletal myosin II filament stacks.
    Hu S, Dasbiswas K, Guo Z, Tee Y, Thiagarajan V, Hersen P, Chew T, Safran SA, Zaidel-Bar R, Bershadsky AD
    Nature Cell Biology. 2017 Jan 23;19(2):133-41. doi: 10.1038/ncb3466

    Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.

    View Publication Page
    01/23/17 | Wiring the Drosophila brain with individually tailored neural lineages.
    Lee T
    Current Biology : CB. 2017 Jan 23;27(2):R77-R82. doi: 10.1016/j.cub.2016.12.026

    A complex brain consists of multiple intricate neural networks assembled from distinct sets of input and output neurons as well as region-specific local interneurons. Within a given anatomical set, there exist diverse neuronal types that can vary in morphology, neural physiology, and modes of neurotransmission. The genetic programs that guide specification of neuronal types during neurogenesis preconfigure the brain. This is best demonstrated in the Drosophila central brain, which is composed of ∼100 pairs of individually tailored neuronal lineages. Each neuronal lineage (the neurons/glia produced from a single stem cell) can contain multiple morphological classes of neurons that can consist of many analogous neuronal types. The detailed patterns of neuronal diversification are lineage-specific and can differ drastically even among neighboring neuronal lineages. Furthermore, the interrelationships between neuronal lineages and neural networks are complex. These phenomena underscore the importance of tracking all neuronal lineages in understanding brain development and evolution.

    View Publication Page
    01/19/17 | A fluorescent Hsp90 probe demonstrates the unique association between extracellular Hsp90 and malignancy in vivo.
    Crowe LB, Hughes PF, Alcorta DA, Osada T, Smith AP, Totzke J, Loiselle DR, Lutz ID, Gargesha M, Roy D, Roques J, Darr D, Lyerly HK, Spector NL, Haystead TA
    ACS chemical biology. 2017 Jan 19:. doi: 10.1021/acschembio.7b00006

    Extracellular expression of heat shock protein 90 (eHsp90) by tumor cells is correlated with malignancy. Development of small molecule probes that can detect eHsp90 in vivo may therefore have utility in the early detection of malignancy. We synthesized a cell impermeable far-red fluorophore-tagged Hsp90 inhibitor to target eHsp90 in vivo. High resolution confocal and lattice light sheet microscopy show that probe-bound eHsp90 accumulates in punctate structures on the plasma membrane of breast tumor cells and is actively internalized. The extent of internalization correlates with tumor cell aggressiveness, and this process can be induced in benign cells by over-expressing p110HER2. Whole body cryoslicing, imaging and histology of flank and spontaneous tumor-bearing mice strongly suggests that eHsp90 expression and internalization is a phenomenon unique to tumor cells in vivo and may provide an 'Achilles heel' for the early diagnosis of metastatic disease and targeted drug delivery.

    View Publication Page
    01/19/17 | moxDendra2: an inert photoswitchable protein for oxidizing environments.
    Kaberniuk AA, Morano NC, Verkhusha VV, Snapp EL
    Chemical Communications. 2017 Jan 19;53(13):2106-9. doi: 10.1039/C6CC09997A

    Fluorescent proteins (FPs) that can be optically highlighted enable PALM super-resolution microscopy and pulse-chase experiments of cellular molecules. Most FPs evolved in cytoplasmic environments either in the original source organism or in the cytoplasm of bacteria during the course of optimization for research applications. Consequently, many FPs may fold incorrectly in the chemically distinct environments in subcellular organelles. Here, we describe the first monomeric photoswitchable (from green to bright red) FP adapted for oxidizing environments.

    View Publication Page