Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2 Janelia Publications

Showing 1-2 of 2 results
Your Criteria:
    12/31/17 | A topographic axis of transcriptional identity in thalamus.
    Phillips JW, Schulman A, Hara E, Liu C, Shields BC, Korff W, Lemire A, Dudman JT, Nelson SB, Hantman AW
    bioRxiv. 2017 Dec 31:241315. doi: 10.1101/241315

    A fundamental goal in neuroscience is to uncover common principles by which different modalities of information are processed. In the mammalian brain, thalamus acts as the essential hub for forebrain circuits handling inputs from sensory, motor, limbic, and cognitive pathways. Whether thalamus imposes common transformations on each of these modalities is unknown. Molecular characterization offers a principled approach to revealing the organization of thalamus. Using near-comprehensive and projection-specific transcriptomic sequencing, we found that almost all thalamic nuclei fit into one of three profiles. These profiles lie on a single axis of genetic variance which is aligned with the mediolateral spatial axis of thalamus. Genes defining this axis of variance include receptors and ion channels, providing a systematic diversification of input/output transformations across the topography of thalamus. Single cell transcriptional profiling revealed graded heterogeneity within individual thalamic nuclei, demonstrating that a spectrum of cell types and potentially diverse input/output transforms exist within a given thalamic nucleus. Together, our data argue for an archetypal organization of pathways serving diverse input modalities, and provides a comprehensive organizational scheme for thalamus.

    View Publication Page
    04/07/17 | Deconstructing behavioral neuropharmacology with cellular specificity.
    Shields BC, Kahuno E, Kim C, Apostolides PF, Brown J, Lindo S, Mensh BD, Dudman JT, Lavis LD, Tadross MR
    Science (New York, N.Y.). 2017 Apr 07;356(6333):. doi: 10.1126/science.aaj2161

    Behavior has molecular, cellular, and circuit determinants. However, because many proteins are broadly expressed, their acute manipulation within defined cells has been difficult. Here, we combined the speed and molecular specificity of pharmacology with the cell type specificity of genetic tools. DART (drugs acutely restricted by tethering) is a technique that rapidly localizes drugs to the surface of defined cells, without prior modification of the native target. We first developed an AMPAR antagonist DART, with validation in cultured neuronal assays, in slices of mouse dorsal striatum, and in behaving mice. In parkinsonian animals, motor deficits were causally attributed to AMPARs in indirect spiny projection neurons (iSPNs) and to excess phasic firing of tonically active interneurons (TANs). Together, iSPNs and TANs (i.e., D2 cells) drove akinesia, whereas movement execution deficits reflected the ratio of AMPARs in D2 versus D1 cells. Finally, we designed a muscarinic antagonist DART in one iteration, demonstrating applicability of the method to diverse targets.

    View Publication Page