Filter
Associated Lab
- Ahrens Lab (2) Apply Ahrens Lab filter
- Aso Lab (3) Apply Aso Lab filter
- Baker Lab (1) Apply Baker Lab filter
- Betzig Lab (8) Apply Betzig Lab filter
- Bock Lab (1) Apply Bock Lab filter
- Branson Lab (7) Apply Branson Lab filter
- Card Lab (4) Apply Card Lab filter
- Cardona Lab (8) Apply Cardona Lab filter
- Cui Lab (1) Apply Cui Lab filter
- Dickson Lab (1) Apply Dickson Lab filter
- Druckmann Lab (3) Apply Druckmann Lab filter
- Dudman Lab (4) Apply Dudman Lab filter
- Eddy/Rivas Lab (1) Apply Eddy/Rivas Lab filter
- Feliciano Lab (1) Apply Feliciano Lab filter
- Fetter Lab (4) Apply Fetter Lab filter
- Funke Lab (1) Apply Funke Lab filter
- Gonen Lab (11) Apply Gonen Lab filter
- Grigorieff Lab (6) Apply Grigorieff Lab filter
- Harris Lab (5) Apply Harris Lab filter
- Heberlein Lab (1) Apply Heberlein Lab filter
- Hermundstad Lab (1) Apply Hermundstad Lab filter
- Hess Lab (4) Apply Hess Lab filter
- Jayaraman Lab (4) Apply Jayaraman Lab filter
- Ji Lab (5) Apply Ji Lab filter
- Keleman Lab (1) Apply Keleman Lab filter
- Keller Lab (2) Apply Keller Lab filter
- Lavis Lab (16) Apply Lavis Lab filter
- Lee (Albert) Lab (6) Apply Lee (Albert) Lab filter
- Leonardo Lab (2) Apply Leonardo Lab filter
- Lippincott-Schwartz Lab (9) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (5) Apply Liu (Zhe) Lab filter
- Looger Lab (6) Apply Looger Lab filter
- Magee Lab (2) Apply Magee Lab filter
- Menon Lab (1) Apply Menon Lab filter
- Pachitariu Lab (1) Apply Pachitariu Lab filter
- Reiser Lab (6) Apply Reiser Lab filter
- Riddiford Lab (1) Apply Riddiford Lab filter
- Romani Lab (6) Apply Romani Lab filter
- Rubin Lab (15) Apply Rubin Lab filter
- Saalfeld Lab (4) Apply Saalfeld Lab filter
- Scheffer Lab (4) Apply Scheffer Lab filter
- Schreiter Lab (4) Apply Schreiter Lab filter
- Shroff Lab (1) Apply Shroff Lab filter
- Simpson Lab (2) Apply Simpson Lab filter
- Singer Lab (6) Apply Singer Lab filter
- Spruston Lab (1) Apply Spruston Lab filter
- Stern Lab (8) Apply Stern Lab filter
- Sternson Lab (2) Apply Sternson Lab filter
- Svoboda Lab (9) Apply Svoboda Lab filter
- Truman Lab (6) Apply Truman Lab filter
- Turaga Lab (3) Apply Turaga Lab filter
- Turner Lab (2) Apply Turner Lab filter
- Wu Lab (1) Apply Wu Lab filter
- Zlatic Lab (7) Apply Zlatic Lab filter
Associated Project Team
- Fly Descending Interneuron (1) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (4) Apply Fly Functional Connectome filter
- Fly Olympiad (1) Apply Fly Olympiad filter
- FlyEM (4) Apply FlyEM filter
- FlyLight (2) Apply FlyLight filter
- GENIE (3) Apply GENIE filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (3) Apply Tool Translation Team (T3) filter
- Transcription Imaging (6) Apply Transcription Imaging filter
Associated Support Team
- Anatomy and Histology (2) Apply Anatomy and Histology filter
- Cryo-Electron Microscopy (4) Apply Cryo-Electron Microscopy filter
- Electron Microscopy (1) Apply Electron Microscopy filter
- Fly Facility (1) Apply Fly Facility filter
- Integrative Imaging (1) Apply Integrative Imaging filter
- Project Technical Resources (1) Apply Project Technical Resources filter
- Quantitative Genomics (2) Apply Quantitative Genomics filter
- Scientific Computing Software (9) Apply Scientific Computing Software filter
- Viral Tools (1) Apply Viral Tools filter
- Vivarium (1) Apply Vivarium filter
Publication Date
- December 2017 (15) Apply December 2017 filter
- November 2017 (11) Apply November 2017 filter
- October 2017 (7) Apply October 2017 filter
- September 2017 (14) Apply September 2017 filter
- August 2017 (15) Apply August 2017 filter
- July 2017 (20) Apply July 2017 filter
- June 2017 (18) Apply June 2017 filter
- May 2017 (25) Apply May 2017 filter
- April 2017 (21) Apply April 2017 filter
- March 2017 (15) Apply March 2017 filter
- February 2017 (7) Apply February 2017 filter
- January 2017 (18) Apply January 2017 filter
- Remove 2017 filter 2017
186 Janelia Publications
Showing 141-150 of 186 resultsWhole-cell recording has been used to measure and manipulate a neuron's spiking and subthreshold membrane potential, allowing assessment of the cell's inputs and outputs as well as its intrinsic membrane properties. This technique has also been combined with pharmacology and optogenetics as well as morphological reconstruction to address critical questions concerning neuronal integration, plasticity, and connectivity. This protocol describes a technique for obtaining whole-cell recordings in awake head-fixed animals, allowing such questions to be investigated within the context of an intact network and natural behavioral states. First, animals are habituated to sit quietly with their heads fixed in place. Then, a whole-cell recording is obtained using an efficient, blind patching protocol. We have successfully applied this technique to rats and mice.
Visual motion sensing neurons in the fly also encode a range of behavior-related signals. These nonvisual inputs appear to be used to correct some of the challenges of visually guided locomotion.
Intracellular recording is an essential technique for investigating cellular mechanisms underlying complex brain functions. Despite the high sensitivity of the technique to mechanical disturbances, intracellular recording has been applied to awake, behaving, and even freely moving, animals. Here we summarize recent advances in these methods and their application to the measurement and manipulation of membrane potential dynamics for understanding neuronal computations in behaving animals.
BACKGROUND: The use of genetically-encoded fluorescent reporters is essential for the identification and observation of cells that express transgenic modulatory proteins. Near-infrared (NIR) fluorescent proteins have superior light penetration through biological tissue, but are not yet widely adopted. NEW METHOD: Using the near-infrared fluorescent protein, iRFP713, improves the imaging resolution in thick tissue sections or the intact brain due to the reduced light-scattering at the longer, NIR wavelengths used to image the protein. Additionally, iRFP713 can be used to identify transgenic cells without photobleaching other fluorescent reporters or affecting opsin function. We have generated a set of adeno-associated vectors in which iRFP713 has been fused to optogenetic channels, and can be expressed constitutively or Cre-dependently. RESULTS: iRFP713 is detectable when expressed in neurons both in vitro and in vivo without exogenously supplied chromophore biliverdin. Neuronally-expressed iRFP713 has similar properties to GFP-like fluorescent proteins, including the ability to be translationally fused to channelrhodopsin or halorhodopsin, however, it shows superior photostability compared to EYFP. Furthermore, electrophysiological recordings from iRFP713-labeled cells compared to cells labeled with mCherry suggest that iRFP713 cells are healthier and therefore more stable and reliable in an ex vivo preparation. Lastly, we have generated a transgenic rat that expresses iRFP713 in a Cre-dependent manner. CONCLUSIONS: Overall, we have demonstrated that iRFP713 can be used as a reporter in neurons without the use of exogenous biliverdin, with minimal impact on viability and function thereby making it feasible to extend the capabilities for imaging genetically-tagged neurons in slices and in vivo.
To expand the range of experiments that are accessible with optogenetics, we developed a photocleavable protein (PhoCl) that spontaneously dissociates into two fragments after violet-light-induced cleavage of a specific bond in the protein backbone. We demonstrated that PhoCl can be used to engineer light-activatable Cre recombinase, Gal4 transcription factor, and a viral protease that in turn was used to activate opening of the large-pore ion channel Pannexin-1.
Kernel regression or classification (also referred to as weighted ε-NN methods in Machine Learning) are appealing for their simplicity and therefore ubiquitous in data analysis. How- ever, practical implementations of kernel regression or classification consist of quantizing or sub-sampling data for improving time efficiency, often at the cost of prediction quality. While such tradeoffs are necessary in practice, their statistical implications are generally not well understood, hence practical implementations come with few performance guaran- tees. In particular, it is unclear whether it is possible to maintain the statistical accuracy of kernel prediction—crucial in some applications—while improving prediction time. The present work provides guiding principles for combining kernel prediction with data- quantization so as to guarantee good tradeoffs between prediction time and accuracy, and in particular so as to approximately maintain the good accuracy of vanilla kernel prediction. Furthermore, our tradeoff guarantees are worked out explicitly in terms of a tuning parameter which acts as a knob that favors either time or accuracy depending on practical needs. On one end of the knob, prediction time is of the same order as that of single-nearest- neighbor prediction (which is statistically inconsistent) while maintaining consistency; on the other end of the knob, the prediction risk is nearly minimax-optimal (in terms of the original data size) while still reducing time complexity. The analysis thus reveals the interaction between the data-quantization approach and the kernel prediction method, and most importantly gives explicit control of the tradeoff to the practitioner rather than fixing the tradeoff in advance or leaving it opaque. The theoretical results are validated on data from a range of real-world application domains; in particular we demonstrate that the theoretical knob performs as expected.
The past quarter century has witnessed rapid developments of fluorescence microscopy techniques that enable structural and functional imaging of biological specimens at unprecedented depth and resolution. The performance of these methods in multicellular organisms, however, is degraded by sample-induced optical aberrations. Here I review recent work on incorporating adaptive optics, a technology originally applied in astronomical telescopes to combat atmospheric aberrations, to improve image quality of fluorescence microscopy for biological imaging.
Efforts to map neural circuits have been galvanized by the development of genetic technologies that permit the manipulation of targeted sets of neurons in the brains of freely behaving animals. The success of these efforts relies on the experimenter's ability to target arbitrarily small subsets of neurons for manipulation, but such specificity of targeting cannot routinely be achieved using existing methods. In Drosophila melanogaster, a widely used technique for refined cell-type specific manipulation is the Split GAL4 system, which augments the targeting specificity of the binary GAL4-UAS system by making GAL4 transcriptional activity contingent upon two enhancers, rather than one. To permit more refined targeting, we introduce here the "Killer Zipper" (KZip(+)), a suppressor that makes Split GAL4 targeting contingent upon a third enhancer. KZip(+) acts by disrupting both the formation and activity of Split GAL4 heterodimers, and we show how this added layer of control can be used to selectively remove unwanted cells from a Split GAL4 expression pattern or to subtract neurons of interest from a pattern to determine their requirement in generating a given phenotype. To facilitate application of the KZip(+) technology, we have developed a versatile set of LexAop-KZip(+) fly lines that can be used directly with the large number of LexA driver lines with known expression patterns. The Killer Zipper significantly sharpens the precision of neuronal genetic control available in Drosophila and may be extended to other organisms where Split GAL4-like systems are used.
Summary: State-of-the-art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This processis time-consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leveragesa limited number of manual annotations in order to train a classifier and segment the remaining dataautomatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user-designed image features or classifiers. Availability and Implementation: TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation. Contact: ignacio.arganda@ehu.eus. Supplementary information: Supplementary data are available at Bioinformatics online.
Animals use rules to initiate behaviors. Such rules are often described as triggers that determine when behavior begins. However, although less explored, these selection rules are also an opportunity to establish sensorimotor constraints that influence how the behavior ends. These constraints may be particularly significant in influencing success in prey capture. Here we explore this in dragonfly prey interception. We found that in the moments leading up to takeoff, perched dragonflies employ a series of sensorimotor rules that determine the time of takeoff and increase the probability of successful capture. First, the dragonfly makes a head saccade followed by smooth pursuit movements to orient its direction-of-gaze at potential prey. Second, the dragonfly assesses whether the prey's angular size and speed co-vary within a privileged range. Finally, the dragonfly times the moment of its takeoff to a prediction of when the prey will cross the zenith. Each of these processes serves a purpose. The angular size-speed criteria biases interception flights to catchable prey, while the head movements and the predictive takeoff ensure flights begin with the prey visually fixated and directly overhead-the key parameters that underlie interception steering. Prey that do not elicit takeoff generally fail at least one of the criterion, and the loss of prey fixation or overhead positioning during flight is strongly correlated with terminated flights. Thus from an abundance of potential targets, the dragonfly selects a stereotyped set of takeoff conditions based on the prey and body states most likely to end in successful capture.