Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

174 Janelia Publications

Showing 11-20 of 174 results
Your Criteria:
    12/06/21 | Functional architecture of neural circuits for leg proprioception in Drosophila.
    Chen C, Agrawal S, Mark B, Mamiya A, Sustar A, Phelps JS, Lee WA, Dickson BJ, Card GM, Tuthill JC
    Current Biology. 2021 Dec 06;31(23):5163. doi: 10.1016/j.cub.2021.09.035

    To effectively control their bodies, animals rely on feedback from proprioceptive mechanosensory neurons. In the Drosophila leg, different proprioceptor subtypes monitor joint position, movement direction, and vibration. Here, we investigate how these diverse sensory signals are integrated by central proprioceptive circuits. We find that signals for leg joint position and directional movement converge in second-order neurons, revealing pathways for local feedback control of leg posture. Distinct populations of second-order neurons integrate tibia vibration signals across pairs of legs, suggesting a role in detecting external substrate vibration. In each pathway, the flow of sensory information is dynamically gated and sculpted by inhibition. Overall, our results reveal parallel pathways for processing of internal and external mechanosensory signals, which we propose mediate feedback control of leg movement and vibration sensing, respectively. The existence of a functional connectivity map also provides a resource for interpreting connectomic reconstruction of neural circuits for leg proprioception.

    View Publication Page
    12/06/21 | Non-preferred contrast responses in the Drosophila motion pathways reveal a receptive field structure that explains a common visual illusion.
    Gruntman E, Reimers P, Romani S, Reiser MB
    Current Biology. 2021 Dec 06;31(23):5286. doi: 10.1016/j.cub.2021.09.072

    Diverse sensory systems, from audition to thermosensation, feature a separation of inputs into ON (increments) and OFF (decrements) signals. In the Drosophila visual system, separate ON and OFF pathways compute the direction of motion, yet anatomical and functional studies have identified some crosstalk between these channels. We used this well-studied circuit to ask whether the motion computation depends on ON-OFF pathway crosstalk. Using whole-cell electrophysiology, we recorded visual responses of T4 (ON) and T5 (OFF) cells, mapped their composite ON-OFF receptive fields, and found that they share a similar spatiotemporal structure. We fit a biophysical model to these receptive fields that accurately predicts directionally selective T4 and T5 responses to both ON and OFF moving stimuli. This model also provides a detailed mechanistic explanation for the directional preference inversion in response to the prominent reverse-phi illusion. Finally, we used the steering responses of tethered flying flies to validate the model's predicted effects of varying stimulus parameters on the behavioral turning inversion.

    View Publication Page
    12/03/21 | Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications.
    Rigano A, Ehmsen S, Öztürk SU, Ryan J, Balashov A, Hammer M, Kirli K, Boehm U, Brown CM, Bellve K, Chambers JJ, Cosolo A, Coleman RA, Faklaris O, Fogarty KE, Guilbert T, Hamacher AB, Itano MS, Keeley DP, Kunis S, Lacoste J, Laude A, Ma WY, Marcello M, Montero-Llopis P, Nelson G, Nitschke R, Pimentel JA, Weidtkamp-Peters S, Park PJ, Alver BH, Grunwald D, Strambio-De-Castillia C
    Nature Methods. 2021 Dec 03;18(12):1489-1495. doi: 10.1038/s41592-021-01315-z

    For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.

    View Publication Page
    12/03/21 | Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model.
    Hammer M, Huisman M, Rigano A, Boehm U, Chambers JJ, Gaudreault N, North AJ, Pimentel JA, Sudar D, Bajcsy P, Brown CM, Corbett AD, Faklaris O, Lacoste J, Laude A, Nelson G, Nitschke R, Farzam F, Smith CS, Grunwald D, Strambio-De-Castillia C
    Nature Methods. 2021 Dec 03;18(12):1427-1440. doi: 10.1038/s41592-021-01327-9
    Svoboda LabSaalfeld LabSternson LabTillberg Lab
    12/01/21 | EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization.
    Wang Y, Eddison M, Fleishman G, Weigert M, Xu S, Wang T, Rokicki K, Goina C, Henry FE, Lemire AL, Schmidt U, Yang H, Svoboda K, Myers EW, Saalfeld S, Korff W, Sternson SM, Tillberg PW
    Cell. 2021 Dec 01;184(26):6361. doi: 10.1016/j.cell.2021.11.024

    Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections (300 μm) to facilitate reconstruction of spatio-molecular domains that generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined anatomical organization. Mapping cell types in the LHA revealed nine spatially and molecularly defined subregions. EASI-FISH also facilitates iterative reanalysis of scRNA-seq datasets to determine marker-genes that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, enabling discoveries about brain organization.

    View Publication Page
    12/01/21 | ecDNA hubs drive cooperative intermolecular oncogene expression.
    Hung KL, Yost KE, Xie L, Shi Q, Helmsauer K, Luebeck J, Schöpflin R, Lange JT, Chamorro González R, Weiser NE, Chen C, Valieva ME, Wong IT, Wu S, Dehkordi SR, Duffy CV, Kraft K, Tang J, Belk JA, Rose JC, Corces MR, Granja JM, Li R, Rajkumar U, Friedlein J, Bagchi A, Satpathy AT, Tjian R, Mundlos S, Bafna V, Henssen AG, Mischel PS, Liu Z, Chang HY
    Nature. 2021 Dec 01;600(7890):731-6. doi: 10.1038/s41586-021-04116-8

    Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.

    View Publication Page
    Looger Lab
    12/01/21 | Lupus susceptibility region containing CDKN1B rs34330 mechanistically influences expression and function of multiple target genes, also linked to proliferation and apoptosis.
    Singh B, Maiti GP, Zhou X, Fazel-Najafabadi M, Bae S, Sun C, Terao C, Okada Y, Chua KH, Kochi Y, Guthridge JM, Zhang H, Weirauch M, James JA, Harley JB, Varshney GK, Looger LL, Nath SK
    Arthritis Rheumatology. 2021 Dec 01;73(12):2303-13. doi: 10.1002/art.41799

    OBJECTIVE: A recent genome-wide association study (GWAS) reported a significant genetic association between rs34330 of cyclin-dependent kinase inhibitor 1B (CDKN1B) and risk of systemic lupus erythematosus (SLE) in Han Chinese. This study aims to validate the reported association and elucidate the biochemical mechanisms underlying the variant's effect.

    METHODS: We performed allelic association with SLE followed by meta-analysis across 11 independent cohorts (n=28,872). We applied in silico bioinformatics and experimental validation in SLE-relevant cell lines to determine the functional consequences of rs34330.

    RESULTS: We replicated genetic association between SLE and rs34330 (P =5.29x10 , OR (95% CI)=0.84 (0.81-0.87)). Follow-up bioinformatics and eQTL analysis suggest that rs34330 is located in active chromatin and potentially regulates several target genes. Using luciferase and ChIP-qPCR, we demonstrated substantial allele-specific promoter and enhancer activity, and allele-specific binding of three histone marks (H3K27ac, H3K4me3, H3K4me1), RNA pol II, CTCF, and a critical immune transcription factor (IRF-1). Chromosome conformation capture (3C) detected long-range chromatin interactions between rs34330 and the promoters of neighboring genes APOLD1 and DDX47, and effects on CDKN1B and the other target genes were directly validated by CRISPR-based genome editing. Finally, CRISPR-dCas9-based epigenetic activation/silencing confirmed these results. Gene-edited cell lines also showed higher levels of proliferation and apoptosis.

    CONCLUSION: Collectively, these findings suggest a mechanism whereby the rs34330 risk allele (C) influences the presence of histone marks, RNA pol II, and the IRF-1 transcription factor to regulate expression of several target genes linked to proliferation and apoptosis, which potentially underlie the association of rs34330 with SLE.

    View Publication Page
    12/01/21 | Regulated exocytosis: Renal Aquaporin-2 3D Vesicular Network Organization and Association with F-actin.
    Holst MR, Gammelgaard L, Aaron J, Login FH, Rajkumar S, Hahn U, Nejsum LN
    American Journal of Physiology: Cell Physiology. 2021 Dec 01;321(6):. doi: 10.1152/ajpcell.00255.2021

    Regulated vesicle exocytosis is a key response to extracellular stimuli in diverse physiological processes; including hormone regulated short-term urine concentration. In the renal collecting duct, the water channel aquaporin-2 localizes to the apical plasma membrane as well as small, sub-apical vesicles. In response to stimulation with the antidiuretic hormone, arginine vasopressin, aquaporin-2 containing vesicles fuse with the plasma membrane, which increases collecting duct water reabsorption and thus, urine concentration. The nano-scale size of these vesicles has limited analysis of their 3D organization. Using a cell system combined with 3D super resolution microscopy, we provide the first direct analysis of the 3D network of aquaporin-2 containing exocytic vesicles in a cell culture system. We show that aquaporin-2 vesicles are 43 ± 3nm in diameter, a size similar to synaptic vesicles, and that one fraction of AQP2 vesicles localized with the sub-cortical F-actin layer and the other localized in between the F-actin layer and the plasma membrane. Aquaporin-2 vesicles associated with F-actin and this association was enhanced in a serine 256 phospho-mimic of aquaporin-2, whose phosphorylation is a key event in antidiuretic hormone-mediated aquaporin-2 vesicle exocytosis.

    View Publication Page
    12/01/20 | The structural basis of Rubisco phase separation in the pyrenoid.
    He S, Chou H, Matthies D, Wunder T, Meyer MT, Atkinson N, Martinez-Sanchez A, Jeffrey PD, Port SA, Patena W, He G, Chen VK, Hughson FM, McCormick AJ, Mueller-Cajar O, Engel BD, Yu Z, Jonikas MC
    Nature Plants. 2020 Dec 01;6(12):1480-1490. doi: 10.1038/s41477-020-00811-y

    Approximately one-third of global CO fixation occurs in a phase-separated algal organelle called the pyrenoid. The existing data suggest that the pyrenoid forms by the phase separation of the CO-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase separation remain unknown. Here we present the structural basis of the interactions between Rubisco and its intrinsically disordered linker protein Essential Pyrenoid Component 1 (EPYC1) in the model alga Chlamydomonas reinhardtii. We find that EPYC1 consists of five evenly spaced Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding, phase separation and pyrenoid formation. Cryo-electron tomography supports a model in which EPYC1 and Rubisco form a codependent multivalent network of specific low-affinity bonds, giving the matrix liquid-like properties. Our results advance the structural and functional understanding of the phase separation underlying the pyrenoid, an organelle that plays a fundamental role in the global carbon cycle.

    View Publication Page
    11/30/21 | Multiplex Gene Tagging with CRISPR-Cas9 for Live-Cell Microscopy and Application to Study the Role of SARS-CoV-2 Proteins in Autophagy, Mitochondrial Dynamics, and Cell Growth.
    Perez-Leal O, Nixon-Abell J, Barrero CA, Gordon JC, Oesterling J, Rico MC
    The CRISPR Journal. 2021 Nov 30:. doi: 10.1089/crispr.2021.0041

    The lack of efficient tools to label multiple endogenous targets in cell lines without staining or fixation has limited our ability to track physiological and pathological changes in cells over time via live-cell studies. Here, we outline the FAST-HDR vector system to be used in combination with CRISPR-Cas9 to allow visual live-cell studies of up to three endogenous proteins within the same cell line. Our approach utilizes a novel set of advanced donor plasmids for homology-directed repair and a streamlined workflow optimized for microscopy-based cell screening to create genetically modified cell lines that do not require staining or fixation to accommodate microscopy-based studies. We validated this new methodology by developing two advanced cell lines with three fluorescent-labeled endogenous proteins that support high-content imaging without using antibodies or exogenous staining. We applied this technology to study seven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/COVID-19) viral proteins to understand better their effects on autophagy, mitochondrial dynamics, and cell growth. Using these two cell lines, we were able to identify the protein ORF3a successfully as a potent inhibitor of autophagy, inducer of mitochondrial relocalization, and a growth inhibitor, which highlights the effectiveness of live-cell studies using this technology.

    View Publication Page