Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

6 Janelia Publications

Showing 1-6 of 6 results
Your Criteria:
    11/07/22 | Cellpose 2.0: how to train your own model.
    Pachitariu M, Stringer C
    Nature Methods. 2022 Nov 07:. doi: 10.1038/s41592-022-01663-4

    Pretrained neural network models for biological segmentation can provide good out-of-the-box results for many image types. However, such models do not allow users to adapt the segmentation style to their specific needs and can perform suboptimally for test images that are very different from the training images. Here we introduce Cellpose 2.0, a new package that includes an ensemble of diverse pretrained models as well as a human-in-the-loop pipeline for rapid prototyping of new custom models. We show that models pretrained on the Cellpose dataset can be fine-tuned with only 500-1,000 user-annotated regions of interest (ROI) to perform nearly as well as models trained on entire datasets with up to 200,000 ROI. A human-in-the-loop approach further reduced the required user annotation to 100-200 ROI, while maintaining high-quality segmentations. We provide software tools such as an annotation graphical user interface, a model zoo and a human-in-the-loop pipeline to facilitate the adoption of Cellpose 2.0.

    View Publication Page
    11/04/22 | Facemap: a framework for modeling neural activity based on orofacial tracking
    Atika Syeda , Lin Zhong , Renee Tung , Will Long , Marius Pachitariu , Carsen Stringer
    bioRxiv. 2022 Nov 04:. doi: 10.1101/2022.11.03.515121

    Recent studies in mice have shown that orofacial behaviors drive a large fraction of neural activity across the brain. To understand the nature and function of these signals, we need better computational models to characterize the behaviors and relate them to neural activity. Here we developed Facemap, a framework consisting of a keypoint tracking algorithm and a deep neural network encoder for predicting neural activity. We used the Facemap keypoints as input for the deep neural network to predict the activity of ∼50,000 simultaneously-recorded neurons and in visual cortex we doubled the amount of explained variance compared to previous methods. Our keypoint tracking algorithm was more accurate than existing pose estimation tools, while the inference speed was several times faster, making it a powerful tool for closed-loop behavioral experiments. The Facemap tracker was easy to adapt to data from new labs, requiring as few as 10 annotated frames for near-optimal performance. We used Facemap to find that the neuronal activity clusters which were highly driven by behaviors were more spatially spread-out across cortex. We also found that the deep keypoint features inferred by the model had time-asymmetrical state dynamics that were not apparent in the raw keypoint data. In summary, Facemap provides a stepping stone towards understanding the function of the brainwide neural signals and their relation to behavior.

    View Publication Page
    10/10/22 | Structured random receptive fields enable informative sensory encodings.
    Pandey B, Pachitariu M, Brunton BW, Harris KD
    PLoS Computational Biology. 2022 Oct 10;18(10):e1010484. doi: 10.1371/journal.pcbi.1010484

    Brains must represent the outside world so that animals survive and thrive. In early sensory systems, neural populations have diverse receptive fields structured to detect important features in inputs, yet significant variability has been ignored in classical models of sensory neurons. We model neuronal receptive fields as random, variable samples from parameterized distributions and demonstrate this model in two sensory modalities using data from insect mechanosensors and mammalian primary visual cortex. Our approach leads to a significant theoretical connection between the foundational concepts of receptive fields and random features, a leading theory for understanding artificial neural networks. The modeled neurons perform a randomized wavelet transform on inputs, which removes high frequency noise and boosts the signal. Further, these random feature neurons enable learning from fewer training samples and with smaller networks in artificial tasks. This structured random model of receptive fields provides a unifying, mathematically tractable framework to understand sensory encodings across both spatial and temporal domains.

    View Publication Page
    04/05/22 | Cellpose 2.0: how to train your own model
    Stringer C, Pachitariu M
    bioRxiv. 2022 Apr 05:. doi: 10.1101/2022.04.01.486764

    Generalist models for cellular segmentation, like Cellpose, provide good out-of-the-box results for many types of images. However, such models do not allow users to adapt the segmentation style to their specific needs and may perform sub-optimally for test images that are very different from the training images. Here we introduce Cellpose 2.0, a new package which includes an ensemble of diverse pretrained models as well as a human-in-the-loop pipeline for quickly prototyping new specialist models. We show that specialist models pretrained on the Cellpose dataset can achieve state-of-the-art segmentation on new image categories with very little user-provided training data. Models trained on 500-1000 segmented regions-of-interest (ROIs) performed nearly as well as models trained on entire datasets with up to 200,000 ROIs. A human-in-the-loop approach further reduced the required user annotations to 100-200 ROIs, while maintaining state-of-the-art segmentation performance. This approach enables a new generation of specialist segmentation models that can be trained on new image types with only 1-2 hours of user effort. We provide software tools including an annotation GUI, a model zoo and a human-in-the-loop pipeline to facilitate the adoption of Cellpose 2.0.

    View Publication Page
    02/13/22 | Structured random receptive fields enable informative sensory encodings
    Biraj Pandey , Marius Pachitariu , Bingni W. Brunton , Kameron Decker Harris
    bioRxiv. 2022 Feb 13:. doi: 10.1101/2021.09.09.459651

    Brains must represent the outside world so that animals survive and thrive. In early sensory systems, neural populations have diverse receptive fields structured to detect important features in inputs, yet significant variability has been ignored in classical models of sensory neurons. We model neuronal receptive fields as random, variable samples from parametrized distributions in two sensory modalities, using data from insect mechanosensors and neurons of mammalian primary visual cortex. We show that these random feature neurons perform a randomized wavelet transform on inputs which removes high frequency noise and boosts the signal. Our result makes a significant theoretical connection between the foundational concepts of receptive fields in neuroscience and random features in artificial neural networks. Further, these random feature neurons enable learning from fewer training samples and with smaller networks in artificial tasks. This structured random model of receptive fields provides a unifying, mathematically tractable framework to understand sensory encodings across both spatial and temporal domains.

    View Publication Page
    01/12/22 | Toroidal topology of population activity in grid cells.
    Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, Dunn BA, Moser M, Moser EI
    Nature. 2022 Jan 12;602(7895):123-128. doi: 10.1038/s41586-021-04268-7

    The medial entorhinal cortex is part of a neural system for mapping the position of an individual within a physical environment. Grid cells, a key component of this system, fire in a characteristic hexagonal pattern of locations, and are organized in modules that collectively form a population code for the animal's allocentric position. The invariance of the correlation structure of this population code across environments and behavioural states, independent of specific sensory inputs, has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) as a possible substrate of the grid pattern. However, whether grid cell networks show continuous attractor dynamics, and how they interface with inputs from the environment, has remained unclear owing to the small samples of cells obtained so far. Here, using simultaneous recordings from many hundreds of grid cells and subsequent topological data analysis, we show that the joint activity of grid cells from an individual module resides on a toroidal manifold, as expected in a two-dimensional CAN. Positions on the torus correspond to positions of the moving animal in the environment. Individual cells are preferentially active at singular positions on the torus. Their positions are maintained between environments and from wakefulness to sleep, as predicted by CAN models for grid cells but not by alternative feedforward models. This demonstration of network dynamics on a toroidal manifold provides a population-level visualization of CAN dynamics in grid cells.

    View Publication Page