Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

92 Janelia Publications

Showing 71-80 of 92 results
Your Criteria:
    11/01/11 | Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination.
    Milkie DE, Betzig E, Ji N
    Optics Letters. 2011 Nov 1;36(21):4206-8. doi: 10.1364/OL.36.004206

    Optical aberrations deteriorate the performance of microscopes. Adaptive optics can be used to improve imaging performance via wavefront shaping. Here, we demonstrate a pupil-segmentation based adaptive optical approach with full-pupil illumination. When implemented in a two-photon fluorescence microscope, it recovers diffraction-limited performance and improves imaging signal and resolution.

    View Publication Page
    05/01/11 | Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination.
    Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, Betzig E
    Nature Methods. 2011 May;8(5):417-23. doi: 10.1038/nmeth.1586

    A key challenge when imaging living cells is how to noninvasively extract the most spatiotemporal information possible. Unlike popular wide-field and confocal methods, plane-illumination microscopy limits excitation to the information-rich vicinity of the focal plane, providing effective optical sectioning and high speed while minimizing out-of-focus background and premature photobleaching. Here we used scanned Bessel beams in conjunction with structured illumination and/or two-photon excitation to create thinner light sheets (<0.5 μm) better suited to three-dimensional (3D) subcellular imaging. As demonstrated by imaging the dynamics of mitochondria, filopodia, membrane ruffles, intracellular vesicles and mitotic chromosomes in live cells, the microscope currently offers 3D isotropic resolution down to \~{}0.3 μm, speeds up to nearly 200 image planes per second and the ability to noninvasively acquire hundreds of 3D data volumes from single living cells encompassing tens of thousands of image frames.

    View Publication Page
    05/01/11 | Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. (With commentary)
    Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, Betzig E
    Nature Methods. 2011 May;8(5):417-23. doi: 10.1038/nmeth.1586

    A key challenge when imaging living cells is how to noninvasively extract the most spatiotemporal information possible. Unlike popular wide-field and confocal methods, plane-illumination microscopy limits excitation to the information-rich vicinity of the focal plane, providing effective optical sectioning and high speed while minimizing out-of-focus background and premature photobleaching. Here we used scanned Bessel beams in conjunction with structured illumination and/or two-photon excitation to create thinner light sheets (<0.5 μm) better suited to three-dimensional (3D) subcellular imaging. As demonstrated by imaging the dynamics of mitochondria, filopodia, membrane ruffles, intracellular vesicles and mitotic chromosomes in live cells, the microscope currently offers 3D isotropic resolution down to \~{}0.3 μm, speeds up to nearly 200 image planes per second and the ability to noninvasively acquire hundreds of 3D data volumes from single living cells encompassing tens of thousands of image frames.

    Commentary: Plane illumination microscopy has proven to be a powerful tool for studying multicellular organisms and their development at single cell resolution. However, the light sheets employed are usually too thick to provide much benefit for imaging organelles within single cultured cells. Here we introduce the use of scanned Bessel beams to create much thinner light sheets better suited to long-term dynamic live cell imaging. Such light sheets not only minimize photobleaching and phototoxicity at the sub-cellular level, but also provide axial resolution enhancement, yielding isotropic three dimensional spatial resolution. Numerous movies are provided to demonstrate the wealth of 4D information (x,y,x,t) that can be obtained from single living cells by the method. Besides providing an attractive alternative to spinning disk, AOD-driven, or line scan confocal microscopes for high speed live cell imaging, the Bessel microscope might serve as a valuable platform for superresolution microscopy (PALM, structured Illumination, or RESOLFT), since confinement of the excitation to the focal plane makes far better use of the limited fluorescence photon budget than does the traditional epi-illumination configuration.

    View Publication Page
    03/15/11 | Subnuclear segregation of genes and core promoter factors in myogenesis. (With commentary)
    Yao J, Fetter RD, Hu P, Betzig E, Tjian R
    Genes & Development. 2011 Mar 15;25(6):569-80. doi: 10.1073/pnas.1100640108

    Recent findings implicate alternate core promoter recognition complexes in regulating cellular differentiation. Here we report a spatial segregation of the alternative core factor TAF3, but not canonical TFIID subunits, away from the nuclear periphery, where the key myogenic gene MyoD is preferentially localized in myoblasts. This segregation is correlated with the differential occupancy of TAF3 versus TFIID at the MyoD promoter. Loss of this segregation by modulating either the intranuclear location of the MyoD gene or TAF3 protein leads to altered TAF3 occupancy at the MyoD promoter. Intriguingly, in differentiated myotubes, the MyoD gene is repositioned to the nuclear interior, where TAF3 resides. The specific high-affinity recognition of H3K4Me3 by the TAF3 PHD (plant homeodomain) finger appears to be required for the sequestration of TAF3 to the nuclear interior. We suggest that intranuclear sequestration of core transcription components and their target genes provides an additional mechanism for promoter selectivity during differentiation.

    Commentary: Jie Yao in Bob Tijan’s lab used a combination of confocal microscopy and dual label PALM in thin sections cut from resin-embedded cells to show that certain core transcription components and their target genes are spatially segregated in myoblasts, but not in differentiated myotubes, suggesting that such spatial segregation may play a role in guiding cellular differentiation.

     

    View Publication Page
    01/01/11 | Probing tension and dynamics in actomyosin mediated cell shape change.
    Higgins CD, Tulu US, Gao L, Betzig E, Kiehart DP, Goldstein B
    Molecular Biology of the Cell. 2011;22:
    01/01/11 | Pupil-segmentation-based adaptive optics for microscopy.
    Ji N, Milkie DE, Betzig E
    Proceedings of SPIE. 2011;7931:79310I. doi: 10.1117/12.876398

    Inhomogeneous optical properties of biological samples make it difficult to obtain diffraction-limited resolution in depth. Correcting the sample-induced optical aberrations needs adaptive optics (AO). However, the direct wavefront-sensing approach commonly used in astronomy is not suitable for most biological samples due to their strong scattering of light. We developed an image-based AO approach that is insensitive to sample scattering. By comparing images of the sample taken with different segments of the pupil illuminated, local tilt in the wavefront is measured from image shift. The aberrated wavefront is then obtained either by measuring the local phase directly using interference or with phase reconstruction algorithms similar to those used in astronomical AO. We implemented this pupil-segmentation-based approach in a two-photon fluorescence microscope and demonstrated that diffraction-limited resolution can be recovered from nonbiological and biological samples.

    View Publication Page
    07/15/10 | Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. (With commentary)
    Frost NA, Shroff H, Kong H, Betzig E, Blanpied TA
    Neuron. 2010 Jul 15;67(1):86-99. doi: 10.1016/j.neuron.2010.05.026

    Within dendritic spines, actin is presumed to anchor receptors in the postsynaptic density and play numerous roles regulating synaptic transmission. However, the submicron dimensions of spines have hindered examination of actin dynamics within them and prevented live-cell discrimination of perisynaptic actin filaments. Using photoactivated localization microscopy, we measured movement of individual actin molecules within living spines. Velocity of single actin molecules along filaments, an index of filament polymerization rate, was highly heterogeneous within individual spines. Most strikingly, molecular velocity was elevated in discrete, well-separated foci occurring not principally at the spine tip, but in subdomains throughout the spine, including the neck. Whereas actin velocity on filaments at the synapse was substantially elevated, at the endocytic zone there was no enhanced polymerization activity. We conclude that actin subserves spatially diverse, independently regulated processes throughout spines. Perisynaptic actin forms a uniquely dynamic structure well suited for direct, active regulation of the synapse.

    Commentary: A nice application of single particle tracking PALM (sptPALM), showing the flow of actin in the spines of live cultured neurons. Since 2008, the PALM in our lab has largely become a user facility, available to outside users as well as Janelians. Grad student Nick Frost in Tom Blanpied’s group at the U. of Maryland Med School visited on a number of occasions to use the PALM, with training and assistance from Hari.

    View Publication Page
    02/01/10 | Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. (With commentary)
    Ji N, Milkie DE, Betzig E
    Nature Methods. 2010 Feb;7:141-7. doi: 10.1038/nmeth.1411

    Biological specimens are rife with optical inhomogeneities that seriously degrade imaging performance under all but the most ideal conditions. Measuring and then correcting for these inhomogeneities is the province of adaptive optics. Here we introduce an approach to adaptive optics in microscopy wherein the rear pupil of an objective lens is segmented into subregions, and light is directed individually to each subregion to measure, by image shift, the deflection faced by each group of rays as they emerge from the objective and travel through the specimen toward the focus. Applying our method to two-photon microscopy, we could recover near-diffraction-limited performance from a variety of biological and nonbiological samples exhibiting aberrations large or small and smoothly varying or abruptly changing. In particular, results from fixed mouse cortical slices illustrate our ability to improve signal and resolution to depths of 400 microm.

    Commentary: Introduces a new, zonal approach to adaptive optics (AO) in microscopy suitable for highly inhomogeneous and/or scattering samples such as living tissue. The method is unique in its ability to handle large amplitude aberrations (>20 wavelengths), including spatially complex aberrations involving high order modes beyond the ability of most AO actuators to correct. As befitting a technique designed for in vivo fluorescence imaging, it is also photon efficient.
    Although used here in conjunction with two photon microscopy to demonstrate correction deep into scattering tissue, the same principle of pupil segmentation might be profitably adapted to other point-scanning or widefield methods. For example, plane illumination microscopy of multicellular specimens is often beset by substantial aberrations, and all far-field superresolution methods are exquisitely sensitive to aberrations.

    View Publication Page
    02/01/10 | Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues.
    Ji N, Milkie DE, Betzig E
    Nature Methods. 2010 Feb;7:141-7. doi: 10.1038/nmeth.1411

    Biological specimens are rife with optical inhomogeneities that seriously degrade imaging performance under all but the most ideal conditions. Measuring and then correcting for these inhomogeneities is the province of adaptive optics. Here we introduce an approach to adaptive optics in microscopy wherein the rear pupil of an objective lens is segmented into subregions, and light is directed individually to each subregion to measure, by image shift, the deflection faced by each group of rays as they emerge from the objective and travel through the specimen toward the focus. Applying our method to two-photon microscopy, we could recover near-diffraction-limited performance from a variety of biological and nonbiological samples exhibiting aberrations large or small and smoothly varying or abruptly changing. In particular, results from fixed mouse cortical slices illustrate our ability to improve signal and resolution to depths of 400 microm.

    View Publication Page
    07/26/09 | Three-dimensional super-resolution imaging of thick biological samples.
    Vaziri A, Tang J, Shroff H, Shank C
    Microscopy and Microanalysis. 2009 Jul 26;15:36-7. doi: 10.1017/S1431927609092368