Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

7 Janelia Publications

Showing 1-7 of 7 results
Your Criteria:
    06/13/17 | A complete electron microscopy volume of the brain of adult Drosophila melanogaster.
    Yang Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M, Milkie DE, Torrens O, Price J, Fisher CB, Sharifi N, Calle-Schuler SA, Kmecova L, Ali IJ, Karsh B, Trautman ET, Bogovic JA, Hanslovsky P, Jefferis GS, Kazhdan M, Khairy K
    bioRxiv. 2017 Jun 13:. doi: 10.1101/140905

    Drosophila melanogaster has a rich repertoire of innate and learned behaviors. Its 100,000-neuron brain is a large but tractable target for comprehensive neural circuit mapping. Only electron microscopy (EM) enables complete, unbiased mapping of synaptic connectivity; however, the fly brain is too large for conventional EM. We developed a custom high-throughput EM platform and imaged the entire brain of an adult female fly. We validated the dataset by tracing brain-spanning circuitry involving the mushroom body (MB), intensively studied for its role in learning. Here we describe the complete set of olfactory inputs to the MB; find a new cell type providing driving input to Kenyon cells (the intrinsic MB neurons); identify neurons postsynaptic to Kenyon cell dendrites; and find that axonal arbors providing input to the MB calyx are more tightly clustered than previously indicated by light-level data. This freely available EM dataset will significantly accelerate Drosophila neuroscience.

    View Publication Page
    01/31/17 | Multicut brings automated neurite segmentation closer to human performance.
    Beier T, Pape C, Rahaman N, Prange T, Berg S, Bock DD, Cardona A, Knott GW, Plaza SM, Scheffer LK, Koethe U, Kreshuk A, Hamprecht FA
    Nature Methods. 2017 Jan 31;14(2):101-102. doi: 10.1038/nmeth.4151
    07/06/16 | A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons.
    Micheva KD, Wolman D, Mensh BD, Pax E, Buchanan J, Smith SJ, Bock DD
    eLife. 2016 Jul 6:. doi: 10.7554/eLife.15784

    Myelin is best known for its role in increasing the conduction velocity and metabolic efficiency of long-range excitatory axons. Accordingly, the myelin observed in neocortical gray matter is thought to mostly ensheath excitatory axons connecting to subcortical regions and distant cortical areas. Using independent analyses of light and electron microscopy data from mouse neocortex, we show that a surprisingly large fraction of cortical myelin (half the myelin in layer 2/3 and a quarter in layer 4) ensheathes axons of inhibitory neurons, specifically of parvalbumin-positive basket cells. This myelin differs significantly from that of excitatory axons in distribution and protein composition. Myelin on inhibitory axons is unlikely to meaningfully hasten the arrival of spikes at their pre-synaptic terminals, due to the patchy distribution and short path-lengths observed. Our results thus highlight the need for exploring alternative roles for myelin in neocortical circuits.

    View Publication Page
    10/01/13 | Optimizing the quantity/quality trade-off in connectome inference.
    Priebe CE, Vogelstein J, Bock D
    Communications in Statistics-Theory and Methods. 2013 Oct;42:3455-62. doi: 10.1080/03610926.2011.630768

    We demonstrate a meaningful prospective power analysis for an (admittedly idealized) illustrative connectome inference task. Modeling neurons as vertices and synapses as edges in a simple random graph model, we optimize the trade-off between the number of (putative) edges identified and the accuracy of the edge identification procedure. We conclude that explicit analysis of the quantity/quality trade-off is imperative for optimal neuroscientific experimental design. In particular, identifying edges faster/more cheaply, but with more error, can yield superior inferential performance.

    View Publication Page
    06/18/13 | The Open Connectome Project Data Cluster: Scalable analysis and vision for high-throughput neuroscience.
    Burns R, Roncal WG, Kleissas D, Lillaney K, Manavalan P, Perlman E, Berger DR, Bock DD, Chung K, Grosenick L, Kasthuri N, Weiler NC, Deisseroth K, Kazhdan M, Lichtman J, Reid RC, Smith SJ, Szalay AS, Vogelstein JT, Vogelstein RJ
    Scientific and Statistical Database Management: International Conference, SSDBM ... : Proceedings. International Conference on Scientific and Statistical Database Management. 2013 Jun 18:. doi: 10.1145/2484838.2484870

    We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes- neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.

    View Publication Page
    02/01/12 | Volume electron microscopy for neuronal circuit reconstruction.
    Briggman KL, Bock DD
    Current Opinion in Neurobiology. 2012 Feb;22(1):154-61. doi: 10.1016/j.conb.2011.10.022

    The last decade has seen a rapid increase in the number of tools to acquire volume electron microscopy (EM) data. Several new scanning EM (SEM) imaging methods have emerged, and classical transmission EM (TEM) methods are being scaled up and automated. Here we summarize the new methods for acquiring large EM volumes, and discuss the tradeoffs in terms of resolution, acquisition speed, and reliability. We then assess each method’s applicability to the problem of reconstructing anatomical connectivity between neurons, considering both the current capabilities and future prospects of the method. Finally, we argue that neuronal ’wiring diagrams’ are likely necessary, but not sufficient, to understand the operation of most neuronal circuits: volume EM imaging will likely find its best application in combination with other methods in neuroscience, such as molecular biology, optogenetics, and physiology.

    View Publication Page
    11/09/11 | Large-scale automated histology in the pursuit of connectomes.
    Kleinfeld D, Bharioke A, Blinder P, Bock DD, Briggman KL, Chklovskii DB, Denk W, Helmstaedter M, Kaufhold JP, Lee WA, Meyer HS, Micheva KD, Oberlaender M, Prohaska S, Reid RC, Smith SJ, Takemura S, Tsai PS, Sakmann B
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2011 Nov 9;31(45):16125-38. doi: 10.1523/JNEUROSCI.4077-11.2011

    How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain’s computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.

    View Publication Page