Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    04/26/19 | Dynamic super-resolution structured illumination imaging in the living brain.
    Turcotte R, Liang Y, Tanimoto M, Zhang Q, Li Z, Koyama M, Betzig E, Ji N
    Proceedings of the National Academy of Sciences of the United States of America. 2019 Apr 26;116(19):9586-91. doi: 10.1073/pnas.1819965116

    Cells in the brain act as components of extended networks. Therefore, to understand neurobiological processes in a physiological context, it is essential to study them in vivo. Super-resolution microscopy has spatial resolution beyond the diffraction limit, thus promising to provide structural and functional insights that are not accessible with conventional microscopy. However, to apply it to in vivo brain imaging, we must address the challenges of 3D imaging in an optically heterogeneous tissue that is constantly in motion. We optimized image acquisition and reconstruction to combat sample motion and applied adaptive optics to correcting sample-induced optical aberrations in super-resolution structured illumination microscopy (SIM) in vivo. We imaged the brains of live zebrafish larvae and mice and observed the dynamics of dendrites and dendritic spines at nanoscale resolution.

    View Publication Page
    Ji Lab
    04/01/18 | 50 Hz volumetric functional imaging with continuously adjustable depth of focus.
    Lu R, Tanimoto M, Koyama M, Na J
    Biomedical Optics Express. 2018 Apr;9(4):1964-76. doi: 10.1364/BOE.9.001964

    Understanding how neural circuits control behavior requires monitoring a large population of neurons with high spatial resolution and volume rate. Here we report an axicon-based Bessel beam module with continuously adjustable depth of focus (CADoF), that turns frame rate into volume rate by extending the excitation focus in the axial direction while maintaining high lateral resolutions. Cost-effective and compact, this CADoF Bessel module can be easily integrated into existing two-photon fluorescence microscopes. Simply translating one of the relay lenses along its optical axis enabled continuous adjustment of the axial length of the Bessel focus. We used this module to simultaneously monitor activity of spinal projection neurons extending over 60 µm depth in larval zebrafish at 50 Hz volume rate with adjustable axial extent of the imaged volume.

    View Publication Page
    Ji LabJayaraman LabSvoboda Lab
    02/27/17 | Video-rate volumetric functional imaging of the brain at synaptic resolution.
    Lu R, Sun W, Liang Y, Kerlin A, Bierfeld J, Seelig JD, Wilson DE, Scholl B, Mohar B, Tanimoto M, Koyama M, Fitzpatrick D, Orger MB, Ji N
    Nature Neuroscience. 2017 Feb 27;20(4):620-8. doi: 10.1038/nn.4516

    Neurons and neural networks often extend hundreds of micrometers in three dimensions. Capturing the calcium transients associated with their activity requires volume imaging methods with subsecond temporal resolution. Such speed is a challenge for conventional two-photon laser-scanning microscopy, because it depends on serial focal scanning in 3D and indicators with limited brightness. Here we present an optical module that is easily integrated into standard two-photon laser-scanning microscopes to generate an axially elongated Bessel focus, which when scanned in 2D turns frame rate into volume rate. We demonstrated the power of this approach in enabling discoveries for neurobiology by imaging the calcium dynamics of volumes of neurons and synapses in fruit flies, zebrafish larvae, mice and ferrets in vivo. Calcium signals in objects as small as dendritic spines could be resolved at video rates, provided that the samples were sparsely labeled to limit overlap in their axially projected images.

    View Publication Page