Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

37 Janelia Publications

Showing 11-20 of 37 results
Your Criteria:
    Singer Lab
    04/19/18 | Transvection Goes Live-Visualizing Enhancer-Promoter Communication between Chromosomes.
    Tsai A, Singer RH, Crocker J
    Molecular Cell. 2018 Apr 19;70(2):195-196. doi: 10.1016/j.molcel.2018.04.004

    Lim et al. (2018) use live imaging in Drosophila embryos to show that enhancers can drive transcription from promoters on another chromosome when they are in close proximity. In addition, they show that multiple promoters can access the same enhancer without competition, potentially sharing a pool of factors in a transcriptional "hub."

    View Publication Page
    11/02/17 | Nuclear microenvironments modulate transcription from low-affinity enhancers.
    Tsai A, Muthusamy AK, Alves MR, Lavis LD, Singer RH, Stern DL, Crocker J
    eLife. 2017 Nov 02;6:. doi: 10.7554/eLife.28975

    Transcription factors bind low-affinity DNA sequences for only short durations. It is not clear how brief, low-affinity interactions can drive efficient transcription. Here we report that the transcription factor Ultrabithorax (Ubx) utilizes low-affinity binding sites in the Drosophila melanogastershavenbaby (svb) locus and related enhancers in nuclear microenvironments of high Ubx concentrations. Related enhancers colocalize to the same microenvironments independently of their chromosomal location, suggesting that microenvironments are highly differentiated transcription domains. Manipulating the affinity of svb enhancers revealed an inverse relationship between enhancer affinity and Ubx concentration required for transcriptional activation. The Ubx cofactor, Homothorax (Hth), was co-enriched with Ubx near enhancers that require Hth, even though Ubx and Hth did not co-localize throughout the nucleus. Thus, microenvironments of high local transcription factor and cofactor concentrations could help low-affinity sites overcome their kinetic inefficiency. Mechanisms that generate these microenvironments could be a general feature of eukaryotic transcriptional regulation.

    View Publication Page
    Singer Lab
    10/24/17 | Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells.
    Haimovich G, Ecker CM, Dunagin MC, Eggan E, Raj A, Gerst JE, Singer RH
    Proceedings of the National Academy of Sciences of the United States of America. 2017 Oct 24;114(46):E9873-E9882. doi: 10.1073/pnas.1706365114

    RNAs have been shown to undergo transfer between mammalian cells, although the mechanism behind this phenomenon and its overall importance to cell physiology is not well understood. Numerous publications have suggested that RNAs (microRNAs and incomplete mRNAs) undergo transfer via extracellular vesicles (e.g., exosomes). However, in contrast to a diffusion-based transfer mechanism, we find that full-length mRNAs undergo direct cell-cell transfer via cytoplasmic extensions characteristic of membrane nanotubes (mNTs), which connect donor and acceptor cells. By employing a simple coculture experimental model and using single-molecule imaging, we provide quantitative data showing that mRNAs are transferred between cells in contact. Examples of mRNAs that undergo transfer include those encoding GFP, mouse β-actin, and human Cyclin D1, BRCA1, MT2A, and HER2. We show that intercellular mRNA transfer occurs in all coculture models tested (e.g., between primary cells, immortalized cells, and in cocultures of immortalized human and murine cells). Rapid mRNA transfer is dependent upon actin but is independent of de novo protein synthesis and is modulated by stress conditions and gene-expression levels. Hence, this work supports the hypothesis that full-length mRNAs undergo transfer between cells through a refined structural connection. Importantly, unlike the transfer of miRNA or RNA fragments, this process of communication transfers genetic information that could potentially alter the acceptor cell proteome. This phenomenon may prove important for the proper development and functioning of tissues as well as for host-parasite or symbiotic interactions.

    View Publication Page
    09/21/17 | Genomic probes.
    Singer RH, Deng W, Lionnet T
    USPTO. 2017 Sep 21;A1:

    Labeled probes, and methods of use thereof, comprise a Cas polypeptide conjugated to gRNA that is specific for target nucleic acid sequences, including genomic DNA sequences. The probes and methods can be used to label nucleic acid sequences without global DNA denaturation. The presently-disclosed subject matter meets some or all of the above identified needs, as will become evident to those of ordinary skill in the art after a study of information provided in this document.

    View Publication Page
    Harris LabSinger LabTranscription ImagingFly Functional Connectome
    06/05/17 | Quantitative mRNA imaging throughout the entire Drosophila brain.
    Long X, Colonell J, Wong AM, Singer RH, Lionnet T
    Nature Methods. 2017 Jun 05;14(7):703-6. doi: 10.1038/nmeth.4309

    We describe a fluorescence in situ hybridization method that permits detection of the localization and abundance of single mRNAs (smFISH) in cleared whole-mount adult Drosophila brains. The approach is rapid and multiplexable and does not require molecular amplification; it allows facile quantification of mRNA expression with subcellular resolution on a standard confocal microscope. We further demonstrate single-mRNA detection across the entire brain using a custom Bessel beam structured illumination microscope (BB-SIM).

    View Publication Page
    Singer Lab
    03/07/17 | Imaging mRNA and protein interactions within neurons.
    Eliscovich C, Shenoy SM, Singer RH
    Proceedings of the National Academy of Sciences of the United States of America. 2017 Mar 07;114(10):E1875-E1884. doi: 10.1073/pnas.1621440114

    RNA-protein interactions are essential for proper gene expression regulation, particularly in neurons with unique spatial constraints. Currently, these interactions are defined biochemically, but a method is needed to evaluate them quantitatively within morphological context. Colocalization of two-color labels using wide-field microscopy is a method to infer these interactions. However, because of chromatic aberrations in the objective lens, this approach lacks the resolution to determine whether two molecules are physically in contact or simply nearby by chance. Here, we developed a robust super registration methodology that corrected the chromatic aberration across the entire image field to within 10 nm, which is capable of determining whether two molecules are physically interacting or simply in proximity by random chance. We applied this approach to image single-molecule FISH in combination with immunofluorescence (smFISH-IF) and determined whether the association between an mRNA and binding protein(s) within a neuron was significant or accidental. We evaluated several mRNA-binding proteins identified from RNA pulldown assays to determine which of these exhibit bona fide interactions. Surprisingly, many known mRNA-binding proteins did not bind the mRNA in situ, indicating that adventitious interactions are significant using existing technology. This method provides an ability to evaluate two-color registration compatible with the scale of molecular interactions.

    View Publication Page
    Singer Lab
    02/28/17 | RNP transport in cell biology: the long and winding road.
    Eliscovich C, Singer RH
    Current Opinion in Cell Biology. 2017 Feb 28;45:38-46. doi: 10.1016/j.ceb.2017.02.008

    Regulation of gene expression is key determinant to cell structure and function. RNA localization, where specific mRNAs are transported to subcellular regions and then translated, is highly conserved in eukaryotes ranging from yeast to extremely specialized and polarized cells such as neurons. Messenger RNA and associated proteins (mRNP) move from the site of transcription in the nucleus to their final destination in the cytoplasm both passively through diffusion and actively via directed transport. Dysfunction of RNA localization, transport and translation machinery can lead to pathology. Single-molecule live-cell imaging techniques have revealed unique features of this journey with unprecedented resolution. In this review, we highlight key recent findings that have been made using these approaches and possible implications for spatial control of gene function.

    View Publication Page
    09/15/16 | Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis.
    Zhang Z, English BP, Grimm JB, Kazane SA, Hu W, Tsai A, Inouye C, You C, Piehler J, Schultz PG, Lavis LD, Revyakin A, Tjian R
    Genes and Development. 2016 Sep 15;30:2106-18. doi: 10.1101/gad.285395.116

    Transcription of protein-encoding genes in eukaryotic cells requires the coordinated action of multiple general transcription factors (GTFs) and RNA polymerase II (Pol II). A “step-wise” preinitiation complex (PIC) assembly model has been suggested based on conventional ensemble biochemical measurements, in which protein factors bind stably to the promoter DNA sequentially to build a functional PIC. However, recent dynamic measurements in live cells suggest that transcription factors mostly interact with chromatin DNA rather transiently. To gain a clearer dynamic picture of PIC assembly, we established an integrated in vitro single-molecule transcription platform reconstituted from highly purified human transcription factors and complemented it by live-cell imaging. Here we performed real-time measurements of the hierarchal promoter-specific binding of TFIID, TFIIA, and TFIIB. Surprisingly, we found that while promoter binding of TFIID and TFIIA is stable, promoter binding by TFIIB is highly transient and dynamic (with an average residence time of 1.5 sec). Stable TFIIB–promoter association and progression beyond this apparent PIC assembly checkpoint control occurs only in the presence of Pol II–TFIIF. This transient-to-stable transition of TFIIB-binding dynamics has gone undetected previously and underscores the advantages of single-molecule assays for revealing the dynamic nature of complex biological reactions.

    View Publication Page
    Lavis LabSinger Lab
    09/13/16 | Glutamate-induced RNA localization and translation in neurons.
    Yoon YJ, Wu B, Buxbaum AR, Das S, Tsai A, English BP, Grimm JB, Lavis LD, Singer RH
    Proceedings of the National Academy of Sciences of the United States of America. 2016 Sep 13:. doi: 10.1073/pnas.1614267113

    Localization of mRNA is required for protein synthesis to occur within discrete intracellular compartments. Neurons represent an ideal system for studying the precision of mRNA trafficking because of their polarized structure and the need for synapse-specific targeting. To investigate this targeting, we derived a quantitative and analytical approach. Dendritic spines were stimulated by glutamate uncaging at a diffraction-limited spot, and the localization of single β-actin mRNAs was measured in space and time. Localization required NMDA receptor activity, a dynamic actin cytoskeleton, and the transacting RNA-binding protein, Zipcode-binding protein 1 (ZBP1). The ability of the mRNA to direct newly synthesized proteins to the site of localization was evaluated using a Halo-actin reporter so that RNA and protein were detected simultaneously. Newly synthesized Halo-actin was enriched at the site of stimulation, required NMDA receptor activity, and localized preferentially at the periphery of spines. This work demonstrates that synaptic activity can induce mRNA localization and local translation of β-actin where the new actin participates in stabilizing the expanding synapse in dendritic spines.

    View Publication Page
    Singer Lab
    05/05/16 | Translation dynamics of single mRNAs in live cells and neurons.
    Wu B, Eliscovich C, Yoon YJ, Singer RH
    Science (New York, N.Y.). 2016 May 05;352(6292):1430-5. doi: 10.1126/science.aaf1084

    Translation is the fundamental biological process converting mRNA information into proteins. Single molecule imaging in live cells has illuminated the dynamics of RNA transcription; however, it is not yet applicable to translation. Here we report Single molecule Imaging of NAscent PeptideS (SINAPS) to assess translation in live cells. The approach provides direct readout of initiation, elongation, and location of translation. We show that mRNAs coding for endoplasmic reticulum (ER) proteins are translated when they encounter the ER membrane. Single molecule fluorescence recovery after photobleaching provides direct measurement of elongation speed (5 AA/s). In primary neurons mRNAs are translated in proximal dendrites but repressed in distal dendrites and display “bursting” translation. This technology provides a tool to address the spatiotemporal translation mechanism of single mRNAs in living cells.

    View Publication Page