Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

67 Janelia Publications

Showing 41-50 of 67 results
Your Criteria:
    08/29/17 | Experimental and statistical reevaluation provides no evidence for Drosophila courtship song rhythms.
    Stern DL, Clemens J, Coen P, Calhoun AJ, Hogenesch JB, Arthur BJ, Murthy M
    Proceedings of the National Academy of Sciences of the United States of America. 2017 Aug 29;114(37):9978-83. doi: 10.1073/pnas.1707471114

    From 1980 to 1992, a series of influential papers reported on the discovery, genetics, and evolution of a periodic cycling of the interval between Drosophila male courtship song pulses. The molecular mechanisms underlying this periodicity were never described. To reinitiate investigation of this phenomenon, we previously performed automated segmentation of songs but failed to detect the proposed rhythm [Arthur BJ, et al. (2013) BMC Biol 11:11; Stern DL (2014) BMC Biol 12:38]. Kyriacou et al. [Kyriacou CP, et al. (2017) Proc Natl Acad Sci USA 114:1970-1975] report that we failed to detect song rhythms because (i) our flies did not sing enough and (ii) our segmenter did not identify many of the song pulses. Kyriacou et al. manually annotated a subset of our recordings and reported that two strains displayed rhythms with genotype-specific periodicity, in agreement with their original reports. We cannot replicate this finding and show that the manually annotated data, the original automatically segmented data, and a new dataset provide no evidence for either the existence of song rhythms or song periodicity differences between genotypes. Furthermore, we have reexamined our methods and analysis and find that our automated segmentation method was not biased to prevent detection of putative song periodicity. We conclude that there is no evidence for the existence of Drosophila courtship song rhythms.

    View Publication Page
    07/31/17 | Functional regulatory evolution outside of the minimal even-skipped stripe 2 enhancer.
    Crocker J, Stern DL
    Development (Cambridge, England). 2017 Jul 31:. doi: 10.1242/dev.149427

    Transcriptional enhancers are regions of DNA that drive precise patterns of gene expression. While many studies have elucidated how individual enhancers can evolve, most of this work has focused on what are called "minimal" enhancers, the smallest DNA regions that drive expression that approximates an aspect of native gene expression. Here we explore how the Drosophila erecta even-skipped (eve) locus has evolved by testing its activity in the divergent D. melanogaster genome. We found, as has been reported previously, that the D. erecta eve stripe 2 enhancer (eveS2) fails to drive appreciable expression in D. melanogaster (1). However, we found that a large transgene carrying the entire D. erecta eve locus drives normal eve expression, including in stripe 2. We performed a functional dissection of the region upstream of the D. erecta eveS2 region and found multiple Zelda motifs that are required for normal expression. Our results illustrate how sequences outside of minimal enhancer regions can evolve functionally through mechanisms other than changes in transcription factor binding sites that drive patterning.

    View Publication Page
    03/09/17 | Genetic and transgenic reagents for Drosophila simulans, D. mauritiana, D. yakuba, D. santomea and D. virilis.
    Stern DL, Crocker J, Ding Y, Frankel N, Kappes G, Kim E, Kuzmickas R, Lemire A, Mast JD, Picard S
    G3 (Bethesda, Md.). 2017 Mar 09;7(4):1339-47. doi: 10.1534/g3.116.038885

    Species of the Drosophila melanogaster species subgroup, including the species D. simulans, D. mauritiana, D. yakuba, and D. santomea, have long served as model systems for studying evolution. Studies in these species have been limited, however, by a paucity of genetic and transgenic reagents. Here we describe a collection of transgenic and genetic strains generated to facilitate genetic studies within and between these species. We have generated many strains of each species containing mapped piggyBac transposons including an enhanced yellow fluorescent protein gene expressed in the eyes and a phiC31 attP site-specific integration site. We have tested a subset of these lines for integration efficiency and reporter gene expression levels. We have also generated a smaller collection of other lines expressing other genetically encoded fluorescent molecules in the eyes and a number of other transgenic reagents that will be useful for functional studies in these species. In addition, we have mapped the insertion locations of 58 transposable elements in D. virilis that will be useful for genetic mapping studies.

    View Publication Page
    02/16/17 | An unsupervised method for quantifying the behavior of interacting individuals.
    Klibaite U, Berman GJ, Cande J, Stern DL
    Physical Biology. 2017 Feb16;14(1):1609.09345. doi: 10.1088/1478-3975/aa5c50

    Behaviors involving the interaction of multiple individuals are complex and frequently crucial for an animal's survival. These interactions, ranging across sensory modalities, length scales, and time scales, are often subtle and difficult to characterize. Contextual effects on the frequency of behaviors become even more difficult to quantify when physical interaction between animals interferes with conventional data analysis, e.g. due to visual occlusion. We introduce a method for quantifying behavior in fruit fly interaction that combines high-throughput video acquisition and tracking of individuals with recent unsupervised methods for capturing an animal's entire behavioral repertoire. We find behavioral differences between solitary flies and those paired with an individual of the opposite sex, identifying specific behaviors that are affected by social and spatial context. Our pipeline allows for a comprehensive description of the interaction between two individuals using unsupervised machine learning methods, and will be used to answer questions about the depth of complexity and variance in fruit fly courtship.

    View Publication Page
    01/03/17 | A fully synthetic transcriptional platform for a multicellular eukaryote.
    Crocker J, Tsai A, Stern DL
    Cell Reports. 2017 Jan 03;18(1):287-296. doi: 10.1016/j.celrep.2016.12.025

    Regions of genomic DNA called enhancers encode binding sites for transcription factor proteins. Binding of activators and repressors increase and reduce transcription, respectively, but it is not understood how combinations of activators and repressors generate precise patterns of transcription during development. Here, we explore this problem using a fully synthetic transcriptional platform in Drosophila consisting of engineered transcription factor gradients and artificial enhancers. We found that binding sites for a transcription factor that makes DNA accessible are required together with binding sites for transcriptional activators to produce a functional enhancer. Only in this context can changes in the number of activator binding sites mediate quantitative control of transcription. Using an engineered transcriptional repressor gradient, we demonstrate that overlapping repressor and activator binding sites provide more robust repression and sharper expression boundaries than non-overlapping sites. This may explain why this common motif is observed in many developmental enhancers.

    View Publication Page
    11/10/16 | Evolved repression overcomes enhancer robustness.
    Preger-Ben Noon E, Davis FP, Stern DL
    Developmental Cell. 2016 Nov 10;39(5):572-84. doi: 10.1016/j.devcel.2016.10.010

    Biological systems display extraordinary robustness. Robustness of transcriptional enhancers results mainly from clusters of binding sites for the same transcription factor, and it is not clear how robust enhancers can evolve loss of expression through point mutations. Here, we report the high-resolution functional dissection of a robust enhancer of the shavenbaby gene that has contributed to morphological evolution. We found that robustness is encoded by many binding sites for the transcriptional activator Arrowhead and that, during evolution, some of these activator sites were lost, weakening enhancer activity. Complete silencing of enhancer function, however, required evolution of a binding site for the spatially restricted potent repressor Abrupt. These findings illustrate that recruitment of repressor binding sites can overcome enhancer robustness and may minimize pleiotropic consequences of enhancer evolution. Recruitment of repression may be a general mode of evolution to break robust regulatory linkages.

    View Publication Page
    08/10/16 | Natural courtship song variation caused by an intronic retroelement in an ion channel gene.
    Ding Y, Berrocal A, Morita T, Longden KD, Stern DL
    Nature. 2016 Aug 10:. doi: 10.1038/nature19093

    Animal species display enormous variation for innate behaviours, but little is known about how this diversity arose. Here, using an unbiased genetic approach, we map a courtship song difference between wild isolates of Drosophila simulans and Drosophila mauritiana to a 966 base pair region within the slowpoke (slo) locus, which encodes a calcium-activated potassium channel. Using the reciprocal hemizygosity test, we confirm that slo is the causal locus and resolve the causal mutation to the evolutionarily recent insertion of a retroelement in a slo intron within D. simulans. Targeted deletion of this retroelement reverts the song phenotype and alters slo splicing. Like many ion channel genes, slo is expressed widely in the nervous system and influences a variety of behaviours; slo-null males sing little song with severely disrupted features. By contrast, the natural variant of slo alters a specific component of courtship song, illustrating that regulatory evolution of a highly pleiotropic ion channel gene can cause modular changes in behaviour.

    View Publication Page
    Truman LabStern LabFly Functional Connectome
    06/20/16 | Doublesex regulates the connectivity of a neural circuit controlling Drosophila male courtship song.
    Shirangi TR, Wong AM, Truman JW, Stern DL
    Developmental Cell. 2016 Jun 20;37(6):533-44. doi: 10.1016/j.devcel.2016.05.012

    It is unclear how regulatory genes establish neural circuits that compose sex-specific behaviors. The Drosophila melanogaster male courtship song provides a powerful model to study this problem. Courting males vibrate a wing to sing bouts of pulses and hums, called pulse and sine song, respectively. We report the discovery of male-specific thoracic interneurons—the TN1A neurons—that are required specifically for sine song. The TN1A neurons can drive the activity of a sex-non-specific wing motoneuron, hg1, which is also required for sine song. The male-specific connection between the TN1A neurons and the hg1 motoneuron is regulated by the sexual differentiation gene doublesex. We find that doublesex is required in the TN1A neurons during development to increase the density of the TN1A arbors that interact with dendrites of the hg1motoneuron. Our findings demonstrate how a sexual differentiation gene can build a sex-specific circuit motif by modulating neuronal arborization.

    Doublesex-expressing TN1 neurons are necessary and sufficient for the male sine song•A subclass of TN1 neurons, TN1A, contributes to the sine song•TN1A neurons are functionally coupled to a sine song motoneuron, hg1Doublesex regulates the connectivity between the TN1A and hg1 neurons

    It is unclear how developmental regulatory genes specify sex-specific behaviors. Shirangi et al. demonstrate that the Drosophila sexual differentiation gene doublesex encodes a sex-specific behavior—male song—by promoting the connectivity between the male-specific TN1A neurons and the sex-non-specific hg1 neurons, which are required for production of the song.

    View Publication Page
    05/25/16 | Genetic and environmental control of neurodevelopmental robustness in Drosophila.
    Mellert DJ, Williamson WR, Shirangi TR, Card GM, Truman JW
    PLoS One. 2016 May 25;11(5):e0155957. doi: 10.1371/journal.pone.0155957

    Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.

    View Publication Page
    02/08/16 | Quantitatively predictable control of Drosophila transcriptional enhancers in vivo with engineered transcription factors.
    Crocker J, Ilsley GR, Stern DL
    Nature Genetics. 2016 Feb 8:. doi: 10.1038/ng.3509

    Genes are regulated by transcription factors that bind to regions of genomic DNA called enhancers. Considerable effort is focused on identifying transcription factor binding sites, with the goal of predicting gene expression from DNA sequence. Despite this effort, general, predictive models of enhancer function are currently lacking. Here we combine quantitative models of enhancer function with manipulations using engineered transcription factors to examine the extent to which enhancer function can be controlled in a quantitatively predictable manner. Our models, which incorporate few free parameters, can accurately predict the contributions of ectopic transcription factor inputs. These models allow the predictable 'tuning' of enhancers, providing a framework for the quantitative control of enhancers with engineered transcription factors.

    View Publication Page