Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

7 Janelia Publications

Showing 1-7 of 7 results
Your Criteria:
    Svoboda LabSaalfeld LabSternson LabTillberg Lab
    12/01/21 | EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization.
    Wang Y, Eddison M, Fleishman G, Weigert M, Xu S, Wang T, Rokicki K, Goina C, Henry FE, Lemire AL, Schmidt U, Yang H, Svoboda K, Myers EW, Saalfeld S, Korff W, Sternson SM, Tillberg PW
    Cell. 2021 Dec 01;184(26):6361. doi: 10.1016/j.cell.2021.11.024

    Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections (300 μm) to facilitate reconstruction of spatio-molecular domains that generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined anatomical organization. Mapping cell types in the LHA revealed nine spatially and molecularly defined subregions. EASI-FISH also facilitates iterative reanalysis of scRNA-seq datasets to determine marker-genes that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, enabling discoveries about brain organization.

    View Publication Page
    Svoboda LabMouseLight
    11/12/21 | Accurate localization of linear probe electrodes across multiple brains.
    Liu LD, Chen S, Economo MN, Li N, Svoboda K
    eNeuro. 2021 Nov 12;8(6):ENEURO.0241-21.2021
    Romani LabSvoboda Lab
    06/01/21 | Attractor dynamics gate cortical information flow during decision-making.
    Finkelstein A, Fontolan L, Economo MN, Li N, Romani S, Svoboda K
    Nature Neuroscience. 2021 Jun 1;24(6):843-50. doi: 10.1038/s41593-021-00840-6

    Decisions are held in memory until enacted, which makes them potentially vulnerable to distracting sensory input. Gating of information flow from sensory to motor areas could protect memory from interference during decision-making, but the underlying network mechanisms are not understood. Here, we trained mice to detect optogenetic stimulation of the somatosensory cortex, with a delay separating sensation and action. During the delay, distracting stimuli lost influence on behavior over time, even though distractor-evoked neural activity percolated through the cortex without attenuation. Instead, choice-encoding activity in the motor cortex became progressively less sensitive to the impact of distractors. Reverse engineering of neural networks trained to reproduce motor cortex activity revealed that the reduction in sensitivity to distractors was caused by a growing separation in the neural activity space between attractors that encode alternative decisions. Our results show that communication between brain regions can be gated via attractor dynamics, which control the degree of commitment to an action.

    View Publication Page
    04/16/21 | Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings.
    Steinmetz NA, Aydın Ç, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O'Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O'Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD
    Science. 2021 Apr 16;372(6539):. doi: 10.1126/science.abf4588

    Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.

    View Publication Page
    Svoboda Lab
    04/06/21 | High-fidelity estimates of spikes and subthreshold waveforms from 1-photon voltage imaging in vivo.
    Xie ME, Adam Y, Fan LZ, Böhm UL, Kinsella I, Zhou D, Rozsa M, Singh A, Svoboda K, Paninski L, Cohen AE
    Cell Reports. 2021 Apr 06;35(1):108954. doi: 10.1016/j.celrep.2021.108954

    The ability to probe the membrane potential of multiple genetically defined neurons simultaneously would have a profound impact on neuroscience research. Genetically encoded voltage indicators are a promising tool for this purpose, and recent developments have achieved a high signal-to-noise ratio in vivo with 1-photon fluorescence imaging. However, these recordings exhibit several sources of noise and signal extraction remains a challenge. We present an improved signal extraction pipeline, spike-guided penalized matrix decomposition-nonnegative matrix factorization (SGPMD-NMF), which resolves supra- and subthreshold voltages in vivo. The method incorporates biophysical and optical constraints. We validate the pipeline with simultaneous patch-clamp and optical recordings from mouse layer 1 in vivo and with simulated and composite datasets with realistic noise. We demonstrate applications to mouse hippocampus expressing paQuasAr3-s or SomArchon1, mouse cortex expressing SomArchon1 or Voltron, and zebrafish spines expressing zArchon1.

    View Publication Page
    03/08/21 | Expansion-Assisted Iterative-FISH defines lateral hypothalamus spatio-molecular organization
    Yuhan Wang , Mark Eddison , Greg Fleishman , Martin Weigert , Shengjin Xu , Frederick E. Henry , Tim Wang , Andrew L. Lemire , Uwe Schmidt , Hui Yang , Konrad Rokicki , Cristian Goina , Karel Svoboda , Eugene W. Myers , Stephan Saalfeld , Wyatt Korff , Scott M. Sternson , Paul W. Tillberg
    bioRxiv. 2021 Mar 8:. doi: 10.1101/2021.03.08.434304

    Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections (300 µm) to facilitate reconstruction of spatio-molecular domains that generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined anatomical organization. Mapping cell types in the LHA revealed nine novel spatially and molecularly defined subregions. EASI-FISH also facilitates iterative re-analysis of scRNA-Seq datasets to determine marker-genes that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, enabling discoveries about brain organization.

    View Publication Page
    Svoboda Lab
    01/25/21 | Targeted photostimulation uncovers circuit motifs supporting short-term memory.
    Daie K, Svoboda K, Druckmann S
    Nature Neuroscience. 2021 Jan 25;24(2):259-265. doi: 10.1038/s41593-020-00776-3

    Short-term memory is associated with persistent neural activity that is maintained by positive feedback between neurons. To explore the neural circuit motifs that produce memory-related persistent activity, we measured coupling between functionally characterized motor cortex neurons in mice performing a memory-guided response task. Targeted two-photon photostimulation of small (<10) groups of neurons produced sparse calcium responses in coupled neurons over approximately 100 μm. Neurons with similar task-related selectivity were preferentially coupled. Photostimulation of different groups of neurons modulated activity in different subpopulations of coupled neurons. Responses of stimulated and coupled neurons persisted for seconds, far outlasting the duration of the photostimuli. Photostimuli produced behavioral biases that were predictable based on the selectivity of the perturbed neuronal population, even though photostimulation preceded the behavioral response by seconds. Our results suggest that memory-related neural circuits contain intercalated, recurrently connected modules, which can independently maintain selective persistent activity.

    View Publication Page