Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    03/18/16 | Quantitative neuroanatomy for connectomics in Drosophila.
    Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart M, Champion A, Midgley F, Fetter RD, Saalfeld S, Cardona A
    eLife. 2016 Mar 18:e12059. doi: 10.7554/eLife.12059

    Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity.

    View Publication Page
    Cardona LabSaalfeld LabFetter Lab
    07/01/12 | Elastic volume reconstruction from series of ultra-thin microscopy sections.
    Saalfeld S, Fetter RD, Cardona A, Tomancak P
    Nature Methods. 2012 Jul;9(7):717-20. doi: 10.1038/nmeth.2072

    Anatomy of large biological specimens is often reconstructed from serially sectioned volumes imaged by high-resolution microscopy. We developed a method to reassemble a continuous volume from such large section series that explicitly minimizes artificial deformation by applying a global elastic constraint. We demonstrate our method on a series of transmission electron microscopy sections covering the entire 558-cell Caenorhabditis elegans embryo and a segment of the Drosophila melanogaster larval ventral nerve cord.

    View Publication Page
    Cardona LabSaalfeld Lab
    06/02/10 | Identifying neuronal lineages of Drosophila by sequence analysis of axon tracts.
    Cardona A, Saalfeld S, Arganda I, Pereanu W, Schindelin J, Hartenstein V
    The Journal of Neuroscience. 2010 Jun 2;30(22):7538-53. doi: 10.1523/JNEUROSCI.0186-10.2010

    The Drosophila brain is formed by an invariant set of lineages, each of which is derived from a unique neural stem cell (neuroblast) and forms a genetic and structural unit of the brain. The task of reconstructing brain circuitry at the level of individual neurons can be made significantly easier by assigning neurons to their respective lineages. In this article we address the automation of neuron and lineage identification. We focused on the Drosophila brain lineages at the larval stage when they form easily recognizable secondary axon tracts (SATs) that were previously partially characterized. We now generated an annotated digital database containing all lineage tracts reconstructed from five registered wild-type brains, at higher resolution and including some that were previously not characterized. We developed a method for SAT structural comparisons based on a dynamic programming approach akin to nucleotide sequence alignment and a machine learning classifier trained on the annotated database of reference SATs. We quantified the stereotypy of SATs by measuring the residual variability of aligned wild-type SATs. Next, we used our method for the identification of SATs within wild-type larval brains, and found it highly accurate (93-99%). The method proved highly robust for the identification of lineages in mutant brains and in brains that differed in developmental time or labeling. We describe for the first time an algorithm that quantifies neuronal projection stereotypy in the Drosophila brain and use the algorithm for automatic neuron and lineage recognition.

    View Publication Page