Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2 Janelia Publications

Showing 1-2 of 2 results
Your Criteria:
    12/15/17 | Stability, affinity and chromatic variants of the glutamate sensor iGluSnFR.
    Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, Mueller JA, Schoch-McGovern S, Wang SS, Quiroz FJ, Rebola N, Bao H, Little JP, Tkachuk AN, Hantman AW, Chapman ER, Dietrich D, DiGregorio DA, Fitzpatrick D, Looger LL
    bioRxiv. 2017 Dec 15:235176. doi: 10.1101/235176

    Single-wavelength fluorescent reporters allow visualization of specific neurotransmitters with high spatial and temporal resolution. We report variants of the glutamate sensor iGluSnFR that are functionally brighter; can detect sub-micromolar to millimolar concentrations of glutamate; and have blue, green or yellow emission profiles. These variants allow in vivo imaging where original-iGluSnFR was too dim, reveal glutamate transients at individual spine heads, and permit kilohertz imaging with inexpensive, powerful fiber lasers.

    View Publication Page
    06/08/16 | Brain heating induced by near infrared lasers during multi-photon microscopy.
    Podgorski K, Ranganathan GN
    Journal of Neurophysiology. 2016 Jun 8;116(3):1012-23. doi: 10.1152/jn.00275.2016

    Two-photon imaging and optogenetic stimulation rely on high illumination powers, particularly for state-of-the-art applications that target deeper structures, achieve faster measurements, or probe larger brain areas. However, little information is available on heating and resulting damage induced by high-power illumination in the brain. Here we used thermocouple probes and quantum dot nanothermometers to measure temperature changes induced by two-photon microscopy in the neocortex of awake and anaesthetized mice. We characterized heating as a function of wavelength, exposure time, and distance from the center of illumination. Although total power is highest near the surface of the brain, heating was most severe hundreds of microns below the focal plane, due to heat dissipation through the cranial window. Continuous illumination of a 1mm2 area produced a peak temperature increase of approximately 1.8°C/100mW. Continuous illumination with powers above 250 mW induced lasting damage, detected with immunohistochemistry against Iba1, GFAP, heat shock proteins, and activated Caspase-3. Higher powers were usable in experiments with limited duty ratios, suggesting an approach to mitigate damage in high-power microscopy experiments.

    View Publication Page