Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

1 Janelia Publications

Showing 1-1 of 1 results
Your Criteria:
    11/23/21 | Rapid reconstruction of neural circuits using tissue expansion and lattice light sheet microscopy
    Joshua L. Lillvis , Hideo Otsuna , Xiaoyu Ding , Igor Pisarev , Takashi Kawase , Jennifer Colonell , Konrad Rokicki , Cristian Goina , Ruixuan Gao , Amy Hu , Kaiyu Wang , John Bogovic , Daniel E. Milkie , Edward S. Boyden , Stephan Saalfeld , Paul W. Tillberg , Barry J. Dickson
    bioRxiv. 2021 Nov 23:. doi: 10.1101/2021.11.14.468535

    Electron microscopy (EM) allows for the reconstruction of dense neuronal connectomes but suffers from low throughput, limiting its application to small numbers of reference specimens. We developed a protocol and analysis pipeline using tissue expansion and lattice light-sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many samples with single synapse resolution and molecular contrast. We validate this approach in Drosophila, demonstrating that it yields synaptic counts similar to those obtained by EM, can be used to compare counts across sex and experience, and to correlate structural connectivity with functional connectivity. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.

    View Publication Page