Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

4 Janelia Publications

Showing 1-4 of 4 results
Your Criteria:
    11/26/13 | Imaging the transcriptome.
    Lionnet T
    Molecular Systems Biology. 2013 Nov 26;9:710. doi: 10.1038/msb.2013.67
    08/09/13 | Real-time dynamics of RNA polymerase II clustering in live human cells.
    Cisse II, Izeddin I, Causse SZ, Boudarene L, Senecal A, Muresan L, Dugast-Darzacq C, Hajj B, Dahan M, Darzacq X
    Science. 2013 Aug 9;341(6146):664-7. doi: 10.1126/science.1239053

    Transcription is reported to be spatially compartmentalized in nuclear transcription factories with clusters of RNA polymerase II (Pol II). However, little is known about when these foci assemble or their relative stability. We developed a quantitative single-cell approach to characterize protein spatiotemporal organization, with single-molecule sensitivity in live eukaryotic cells. We observed that Pol II clusters form transiently, with an average lifetime of 5.1 (± 0.4) seconds, which refutes the notion that they are statically assembled substructures. Stimuli affecting transcription yielded orders-of-magnitude changes in the dynamics of Pol II clusters, which implies that clustering is regulated and plays a role in the cell’s ability to effect rapid response to external signals. Our results suggest that transient crowding of enzymes may aid in rate-limiting steps of gene regulation.

    View Publication Page
    07/30/13 | ViSP: representing single-particle localizations in three dimensions.
    Beheiry ME, Dahan M
    Nature Methods. 2013 Jul 30;10(8):689-90. doi: 10.1038/nmeth.2566
    01/01/13 | Fast multicolor 3D imaging using aberration-corrected multifocus microscopy.
    Abrahamsson S, Chen J, Hajj B, Stallinga S, Katsov AY, Wisniewski J, Mizuguchi G, Soule P, Mueller F, Darzacq CD, Darzacq X, Wu C, Bargmann CI, Agard DA, Dahan M, Gustafsson MG
    Nature Methods. 2013;10(1):60-3. doi: 10.1038/nmeth.2277

    Conventional acquisition of three-dimensional (3D) microscopy data requires sequential z scanning and is often too slow to capture biological events. We report an aberration-corrected multifocus microscopy method capable of producing an instant focal stack of nine 2D images. Appended to an epifluorescence microscope, the multifocus system enables high-resolution 3D imaging in multiple colors with single-molecule sensitivity, at speeds limited by the camera readout time of a single image.

    View Publication Page