Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    12/11/17 | The functional organization of descending sensory-motor pathways in Drosophila.
    Namiki S, Dickinson MH, Wong AM, Korff W, Card GM
    bioRxiv. 2017 Dec 11:231696. doi: 10.1101/231696

    In most animals, the brain controls the body via a set of descending neurons (DNs) that traverse the neck and terminate in post-cranial regions of the nervous system. This critical neural population is thought to activate, maintain and modulate locomotion and other behaviors. Although individual members of this cell class have been well-studied across species ranging from insects to primates, little is known about the overall connectivity pattern of DNs as a population. We undertook a systematic anatomical investigation of descending neurons in the fruit fly, Drosophila melanogaster, and created a collection of over 100 transgenic lines targeting individual cell types. Our methods allowed us to describe the morphology of roughly half of an estimated 400 DNs and create a comprehensive map of connectivity between the sensory neuropils in the brain and the motor neuropils in the ventral nerve cord. Like the vertebrate spinal cord, our results show that the fly nerve cord is a highly organized, layered system of neuropils, an organization that reflects the fact that insects are capable of two largely independent means of locomotion -- walking and fight -- using distinct sets of appendages. Our results reveal the basic functional map of descending pathways in flies and provide tools for systematic interrogation of sensory-motor circuits.

    View Publication Page
    12/09/17 | Optogenetic dissection of descending behavioral control in Drosophila.
    Cande J, Berman GJ, Namiki S, Qiu J, Korff W, Card GM, Shaevitz JW, Stern DL
    bioRxiv. 2017 Dec 9:230128. doi: 10.1101/230128

    In most animals, the brain makes behavioral decisions that are transmitted by descending neurons to the nerve cord circuitry that produces behaviors. In insects, only a few descending neurons have been associated with specific behaviors. To explore how descending neurons control insect behavior, we developed a novel method to systematically assay the behavioral effects of 160 descending neurons in freely behaving terrestrial D. melanogaster using optogenetic activation. We calculated a 2-dimensional representation of the entire behavior space explored by these flies and associated descending neurons with specific behaviors by identifying regions of this space that were visited with increased frequency during optogenetic activation. We found, that (1) activation of most of the descending neurons drove stereotyped behaviors, (2) in many cases multiple descending neurons activated similar behaviors, and (3) optogenetically-activated behaviors were often dependent on the behavioral state prior to activation.

    View Publication Page
    04/26/17 | A systematic nomenclature for the Drosophila ventral nervous system.
    Court RC, Armstrong JD, Borner J, Card GM, Costa M, Dickinson MH, Duch C, Korff W, Mann RS, Merritt D, Murphey RK, Namiki S, Seeds AM, Shepherd D, Shirangi TR, Simpson JH, Truman JW, Tuthill JC, Williams DW
    bioRxiv. 2017 Apr 26:. doi: 10.1101/122952

    Insect nervous systems are proven and powerful model systems for neuroscience research with wide relevance in biology and medicine. However, descriptions of insect brains have suffered from a lack of a complete and uniform nomenclature. Recognising this problem the Insect Brain Name Working Group produced the first agreed hierarchical nomenclature system for the adult insect brain, using Drosophila melanogaster as the reference framework, with other insect taxa considered to ensure greater consistency and expandability (Ito et al., 2014). Ito et al. (2014) purposely focused on the gnathal regions that account for approximately 50% of the adult CNS. We extend this nomenclature system to the sub-gnathal regions of the adult Drosophila nervous system to provide a nomenclature of the so-called ventral nervous system (VNS), which includes the thoracic and abdominal neuromeres that was not included in the original work and contains the neurons that play critical roles underpinning most fly behaviours.

    View Publication Page