Filter
Associated Lab
- Aguilera Castrejon Lab (1) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (47) Apply Ahrens Lab filter
- Aso Lab (39) Apply Aso Lab filter
- Baker Lab (19) Apply Baker Lab filter
- Betzig Lab (99) Apply Betzig Lab filter
- Beyene Lab (8) Apply Beyene Lab filter
- Bock Lab (14) Apply Bock Lab filter
- Branson Lab (45) Apply Branson Lab filter
- Card Lab (34) Apply Card Lab filter
- Cardona Lab (44) Apply Cardona Lab filter
- Chklovskii Lab (10) Apply Chklovskii Lab filter
- Clapham Lab (12) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (8) Apply Darshan Lab filter
- Dickson Lab (32) Apply Dickson Lab filter
- Druckmann Lab (21) Apply Druckmann Lab filter
- Dudman Lab (34) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (4) Apply Egnor Lab filter
- Espinosa Medina Lab (12) Apply Espinosa Medina Lab filter
- Feliciano Lab (6) Apply Feliciano Lab filter
- Fetter Lab (31) Apply Fetter Lab filter
- Fitzgerald Lab (15) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (35) Apply Funke Lab filter
- Gonen Lab (59) Apply Gonen Lab filter
- Grigorieff Lab (34) Apply Grigorieff Lab filter
- Harris Lab (49) Apply Harris Lab filter
- Heberlein Lab (13) Apply Heberlein Lab filter
- Hermundstad Lab (19) Apply Hermundstad Lab filter
- Hess Lab (70) Apply Hess Lab filter
- Ilanges Lab (1) Apply Ilanges Lab filter
- Jayaraman Lab (40) Apply Jayaraman Lab filter
- Ji Lab (33) Apply Ji Lab filter
- Johnson Lab (1) Apply Johnson Lab filter
- Karpova Lab (13) Apply Karpova Lab filter
- Keleman Lab (8) Apply Keleman Lab filter
- Keller Lab (61) Apply Keller Lab filter
- Koay Lab (1) Apply Koay Lab filter
- Lavis Lab (127) Apply Lavis Lab filter
- Lee (Albert) Lab (29) Apply Lee (Albert) Lab filter
- Leonardo Lab (19) Apply Leonardo Lab filter
- Li Lab (3) Apply Li Lab filter
- Lippincott-Schwartz Lab (89) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (56) Apply Liu (Zhe) Lab filter
- Looger Lab (136) Apply Looger Lab filter
- Magee Lab (31) Apply Magee Lab filter
- Menon Lab (12) Apply Menon Lab filter
- Murphy Lab (6) Apply Murphy Lab filter
- O'Shea Lab (5) Apply O'Shea Lab filter
- Otopalik Lab (1) Apply Otopalik Lab filter
- Pachitariu Lab (30) Apply Pachitariu Lab filter
- Pastalkova Lab (5) Apply Pastalkova Lab filter
- Pavlopoulos Lab (7) Apply Pavlopoulos Lab filter
- Pedram Lab (3) Apply Pedram Lab filter
- Podgorski Lab (16) Apply Podgorski Lab filter
- Reiser Lab (43) Apply Reiser Lab filter
- Riddiford Lab (20) Apply Riddiford Lab filter
- Romani Lab (29) Apply Romani Lab filter
- Rubin Lab (101) Apply Rubin Lab filter
- Saalfeld Lab (44) Apply Saalfeld Lab filter
- Satou Lab (1) Apply Satou Lab filter
- Scheffer Lab (36) Apply Scheffer Lab filter
- Schreiter Lab (46) Apply Schreiter Lab filter
- Shroff Lab (24) Apply Shroff Lab filter
- Simpson Lab (18) Apply Simpson Lab filter
- Singer Lab (37) Apply Singer Lab filter
- Spruston Lab (55) Apply Spruston Lab filter
- Stern Lab (70) Apply Stern Lab filter
- Sternson Lab (47) Apply Sternson Lab filter
- Stringer Lab (27) Apply Stringer Lab filter
- Svoboda Lab (131) Apply Svoboda Lab filter
- Tebo Lab (7) Apply Tebo Lab filter
- Tervo Lab (9) Apply Tervo Lab filter
- Tillberg Lab (14) Apply Tillberg Lab filter
- Tjian Lab (17) Apply Tjian Lab filter
- Truman Lab (58) Apply Truman Lab filter
- Turaga Lab (34) Apply Turaga Lab filter
- Turner Lab (25) Apply Turner Lab filter
- Vale Lab (7) Apply Vale Lab filter
- Voigts Lab (2) Apply Voigts Lab filter
- Wang (Meng) Lab (11) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (5) Apply Wang (Shaohe) Lab filter
- Wu Lab (8) Apply Wu Lab filter
- Zlatic Lab (26) Apply Zlatic Lab filter
- Zuker Lab (5) Apply Zuker Lab filter
Associated Project Team
- CellMap (8) Apply CellMap filter
- COSEM (3) Apply COSEM filter
- FIB-SEM Technology (1) Apply FIB-SEM Technology filter
- Fly Descending Interneuron (10) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (14) Apply Fly Functional Connectome filter
- Fly Olympiad (5) Apply Fly Olympiad filter
- FlyEM (51) Apply FlyEM filter
- FlyLight (46) Apply FlyLight filter
- GENIE (40) Apply GENIE filter
- Integrative Imaging (1) Apply Integrative Imaging filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (16) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (26) Apply Tool Translation Team (T3) filter
- Transcription Imaging (45) Apply Transcription Imaging filter
Associated Support Team
- Project Pipeline Support (1) Apply Project Pipeline Support filter
- Anatomy and Histology (18) Apply Anatomy and Histology filter
- Cryo-Electron Microscopy (33) Apply Cryo-Electron Microscopy filter
- Electron Microscopy (14) Apply Electron Microscopy filter
- Gene Targeting and Transgenics (11) Apply Gene Targeting and Transgenics filter
- Integrative Imaging (14) Apply Integrative Imaging filter
- Invertebrate Shared Resource (39) Apply Invertebrate Shared Resource filter
- Janelia Experimental Technology (35) Apply Janelia Experimental Technology filter
- Management Team (1) Apply Management Team filter
- Molecular Genomics (15) Apply Molecular Genomics filter
- Primary & iPS Cell Culture (14) Apply Primary & iPS Cell Culture filter
- Project Technical Resources (38) Apply Project Technical Resources filter
- Quantitative Genomics (19) Apply Quantitative Genomics filter
- Scientific Computing Software (65) Apply Scientific Computing Software filter
- Scientific Computing Systems (6) Apply Scientific Computing Systems filter
- Viral Tools (14) Apply Viral Tools filter
- Vivarium (6) Apply Vivarium filter
Publication Date
- 2024 (190) Apply 2024 filter
- 2023 (168) Apply 2023 filter
- 2022 (166) Apply 2022 filter
- 2021 (174) Apply 2021 filter
- 2020 (177) Apply 2020 filter
- 2019 (177) Apply 2019 filter
- 2018 (206) Apply 2018 filter
- 2017 (186) Apply 2017 filter
- 2016 (191) Apply 2016 filter
- 2015 (195) Apply 2015 filter
- 2014 (190) Apply 2014 filter
- 2013 (136) Apply 2013 filter
- 2012 (112) Apply 2012 filter
- 2011 (98) Apply 2011 filter
- 2010 (61) Apply 2010 filter
- 2009 (56) Apply 2009 filter
- 2008 (40) Apply 2008 filter
- 2007 (21) Apply 2007 filter
- 2006 (3) Apply 2006 filter
2547 Janelia Publications
Showing 1-10 of 2547 resultsThe structure of compound eyes in arthropods has been the subject of many studies revealing important biological principles. However, until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. Here, by taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy (vEM), we present the first cellular-level reconstruction of the whole compound eye of an insect, the extremely miniaturized parasitoid wasp Megaphragma viggianii. The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye possess nuclei. Like in larger insects, the dorsal rim area (DRA) of the M. viggianii eye contains ommatidia that putatively specialize in the polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three ’ectopic’ photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general.
Two simple models, vaulting over stiff legs and rebounding over compliant legs, are employed to describe the mechanics of legged locomotion. It is agreed that compliant legs are necessary for describing running and that legs are compliant while walking. Despite this agreement, stiff legs continue to be employed to model walking. Here, we show that leg compliance is necessary to model walking and, in the process, identify the principles that underpin two important features of legged locomotion: First, at the same speed, step length, and stance duration, multiple gaits that differ in the number of leg contraction cycles are possible. Among them, humans and other animals choose a gait with M-shaped vertical ground reaction forces because it is energetically favored. Second, the transition from walking to running occurs because of the inability to redirect the vertical component of the velocity during the double stance phase. Additionally, we also examine the limits of double spring-loaded pendulum (DSLIP) as a quantitative model for locomotion, and conclude that DSLIP is limited as a model for walking. However, insights gleaned from the analytical treatment of DSLIP are general and will inform the construction of more accurate models of walking.
Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca concentration using fluorescence lifetime imaging microscopy (FLIM).
Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-strand DNA functionalized single-walled carbon nanotubes (ssDNA-SWCNT) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood. In this study, we used a combination of experimental and computational approaches to show that ligand binding alone is not sufficient for optical modulation in this class of synthetic biosensors. Instead, the optical response that occurs after ligand binding is highly dependent on the chemical properties of the ligands, resembling mechanisms seen in activity-based biosensors. Specifically, we show that in ssDNA-SWCNT catecholamine sensors, the optical response correlates positively with electron density on the aryl motif, even when ligand binding affinities are similar. These findings could serve as a foundation for tuning the performance of existing sensors and guiding the development of new biosensors of this class.
The tilt illusion - a bias in the perceived orientation of a center stimulus induced by an oriented surround - illustrates how context shapes visual perception. While the tilt illusion has been the subject of quantitative study for over 85 years, we still lack a comprehensive account of the phenomenon that connects its neural and behavioral characteristics. Here, we demonstrate that the tilt illusion originates from a dynamic change in neural coding precision induced by the surround context. We simultaneously obtained psychophysical and fMRI responses from human subjects while they viewed gratings in the absence and presence of an oriented surround, and extracted sensory encoding precision from their behavioral and neural data. Both measures show that in the absence of a surround, encoding reflects the natural scene statistics of orientation. However, in the presence of an oriented surround, encoding precision is significantly increased for stimuli similar to the surround orientation. This local change in encoding is sufficient to accurately predict the behavioral characteristics of the tilt illusion using a Bayesian observer model. The effect of surround modulation increases along the ventral stream, and is localized to the portion of the visual cortex with receptive fields at the center-surround boundary. The pattern of change in coding accuracy reflects the surround-conditioned orientation statistics in natural scenes, but cannot be explained by local stimulus configuration. Our results suggest that the tilt illusion naturally emerges from a dynamic coding strategy that efficiently reallocates neural coding resources based on the current stimulus context.
Metabolism is fundamental to organism physiology and pathology. From the intricate network of metabolic reactions, diverse chemical molecules, collectively termed as metabolites, are produced. In multicellular organisms, metabolite communication between different tissues is vital for maintaining homeostasis and adaptation. However, the molecular mechanisms mediating these metabolite communications remain poorly understood. Here, we focus on nucleosides and nucleotides, essential metabolites involved in multiple cellular processes, and report the pivotal role of the SLC29A family of transporters in mediating nucleoside coordination between the soma and the germline. Through genetic analysis, we discovered that two Caenorhabditis elegans homologs of SLC29A transporters, Equilibrative Nucleoside Transporter ENT-1 and ENT-2, act in the germline and the intestine, respectively, to regulate reproduction. Their knockdown synergistically results in sterility. Further single-cell transcriptomic and targeted metabolomic profiling revealed that the ENT double knockdown specifically affects genes in the purine biosynthesis pathway and reduces the ratio of guanosine to adenosine levels. Importantly, guanosine supplementation into the body cavity/pseudocoelom through microinjection rescued the sterility caused by the ENT double knockdown, whereas adenosine microinjection had no effect. Together, these studies support guanosine as a rate limiting factor in the control of reproduction, uncover the previously unknown nucleoside/nucleotide communication between the soma and the germline essential for reproductive success, and highlight the significance of SLC-mediated cell-nonautonomous metabolite coordination in regulating organism physiology.
Dopamine is a key chemical neuromodulator that plays vital roles in various brain functions. Traditionally, neuromodulators like dopamine are believed to be released in a diffuse manner and are not commonly associated with synaptic structures where pre- and postsynaptic processes are closely aligned. Our findings challenge this conventional view. Using single-bouton optical measurements of dopamine release, we discovered that dopamine is predominantly released from varicosities that are juxtaposed against the processes of their target neurons. Dopamine axons specifically target neurons expressing dopamine receptors, forming synapses to release dopamine. Interestingly, varicosities that were not directly apposed to dopamine receptor-expressing processes or associated with neurons lacking dopamine receptors did not release dopamine, regardless of their vesicle content. The ultrastructure of dopamine release sites share common features of classical synapses. We further show that the dopamine released at these contact sites induces a precise, dopamine-gated biochemical response in the target processes. Our results indicate that dopamine release sites share key characteristics of conventional synapses that enable relatively precise and efficient neuromodulation of their targets.
As animals adapt to new situations, neuromodulation is a potent way to alter behavior, yet mechanisms by which neuromodulatory nuclei compute during behavior are underexplored. The serotonergic raphe supports motor learning in larval zebrafish by visually detecting distance traveled during swims, encoding action effectiveness, and modulating motor vigor. We found that swimming opens a gate for visual input to cause spiking in serotonergic neurons, enabling encoding of action outcomes and filtering out learning-irrelevant visual signals. Using light-sheet microscopy, voltage sensors, and neurotransmitter/modulator sensors, we tracked millisecond-timescale neuronal input-output computations during behavior. Swim commands initially inhibited serotonergic neurons via GABA, closing the gate to spiking. Immediately after, the gate briefly opened: voltage increased consistent with post-inhibitory rebound, allowing swim-induced visual motion to evoke firing through glutamate, triggering serotonin secretion and modulating motor vigor. Ablating GABAergic neurons impaired raphe coding and motor learning. Thus, serotonergic neuromodulation arises from action-outcome coincidence detection within the raphe, suggesting the existence of similarly fast and precise circuit computations across neuromodulatory nuclei.
The cellular distribution of mitochondria in response to stress and local energy needs is governed by the relative activities of kinesin and dynein. The mechanism for switching between these two opposite polarity microtubule motors remains unknown. Here, we coupled a novel cellular synthetic cargo transport assay with AlphaFold2-guided mutagenesis to identify a regulatory helix in the mitochondrial adaptor protein (TRAK) that mediates switching between kinesin- and dynein-driven transport. Differences in the helix sequence explain why two near-identical TRAK isoforms transport mitochondria in predominantly opposite directions. Phosphorylation of the regulatory helix by stress-activated kinases causes the activation of dynein and dissociation of kinesin. Our results reveal a molecular mechanism for coordinating the directional transport of mitochondria in response to intracellular signals.
An understanding of human brain individuality requires the integration of data on brain organization across people and brain regions, molecular and systems scales, as well as healthy and clinical states. Here, we help advance this understanding by leveraging methods from computational genomics to integrate large-scale genomic, transcriptomic, neuroimaging, and electronic-health record data sets. We estimated genetically regulated gene expression (gr-expression) of 18,647 genes, across 10 cortical and subcortical regions of 45,549 people from the UK Biobank. First, we showed that patterns of estimated gr-expression reflect known genetic-ancestry relationships, regional identities, as well as inter-regional correlation structure of directly assayed gene expression. Second, we performed transcriptome-wide association studies (TWAS) to discover 1,065 associations between individual variation in gr-expression and gray-matter volumes across people and brain regions. We benchmarked these associations against results from genome-wide association studies (GWAS) of the same sample and found hundreds of novel associations relative to these GWAS. Third, we integrated our results with clinical associations of gr-expression from the Vanderbilt Biobank. This integration allowed us to link genes, via gr-expression, to neuroimaging and clinical phenotypes. Fourth, we identified associations of polygenic gr-expression with structural and functional MRI phenotypes in the Human Connectome Project (HCP), a small neuroimaging-genomic data set with high-quality functional imaging data. Finally, we showed that estimates of gr-expression and magnitudes of TWAS were generally replicable and that the p-values of TWAS were replicable in large samples. Collectively, our results provide a powerful new resource for integrating gr-expression with population genetics of brain organization and disease.