Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

1410 Janelia Publications

Showing 1331-1340 of 1410 results
Hess LabFetter Lab
03/03/09 | Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure.
Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF
Proceedings of the National Academy of Sciences of the United States of America. 2009 Mar 3;106:3125-30. doi: 10.1073/pnas.0813131106

Understanding molecular-scale architecture of cells requires determination of 3D locations of specific proteins with accuracy matching their nanometer-length scale. Existing electron and light microscopy techniques are limited either in molecular specificity or resolution. Here, we introduce interferometric photoactivated localization microscopy (iPALM), the combination of photoactivated localization microscopy with single-photon, simultaneous multiphase interferometry that provides sub-20-nm 3D protein localization with optimal molecular specificity. We demonstrate measurement of the 25-nm microtubule diameter, resolve the dorsal and ventral plasma membranes, and visualize the arrangement of integrin receptors within endoplasmic reticulum and adhesion complexes, 3D protein organization previously resolved only by electron microscopy. iPALM thus closes the gap between electron tomography and light microscopy, enabling both molecular specification and resolution of cellular nanoarchitecture.

View Publication Page
03/01/09 | A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale.
Bohland JW, Wu C, Barbas H, Bokil H, Bota M, Breiter HC, Cline HT, Doyle JC, Freed PJ, Greenspan RJ, Haber SN, Hawrylycz M, Herrera DG, Hilgetag CC, Huang ZJ, Jones A, Jones EG, Karten HJ, Kleinfeld D, Kötter R, Lester HA, Lin JM, Mensh BD, Mikula S, Panksepp J, Price JL, Safdieh J, Saper CB, Schiff ND, Schmahmann JD, Stillman BW, Svoboda K, Swanson LW, Toga AW, Van Essen DC, Watson JD, Mitra PP
PLoS Computational Biology. 2009 Mar;5(3):e1000334. doi: 10.1371/journal.pcbi.1000334

In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is critical, however, for both basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brainwide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brainwide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open-access data repository; compatibility with existing resources; and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.

View Publication Page
03/01/09 | VANO: a volume-object image annotation system.
Peng H, Long F, Myers EW
Bioinformatics. 2009 Mar 1;25:695-7. doi: 10.1093/bioinformatics/btp046

Volume-object annotation system (VANO) is a cross-platform image annotation system that enables one to conveniently visualize and annotate 3D volume objects including nuclei and cells. An application of VANO typically starts with an initial collection of objects produced by a segmentation computation. The objects can then be labeled, categorized, deleted, added, split, merged and redefined. VANO has been used to build high-resolution digital atlases of the nuclei of Caenorhabditis elegans at the L1 stage and the nuclei of Drosophila melanogaster’s ventral nerve cord at the late embryonic stage. AVAILABILITY: Platform independent executables of VANO, a sample dataset, and a detailed description of both its design and usage are available at research.janelia.org/peng/proj/vano. VANO is open-source for co-development.

View Publication Page
02/26/09 | The subcellular organization of neocortical excitatory connections.
Petreanu L, Mao T, Sternson SM, Svoboda K
Nature. 2009 Feb 26;457:1142-5. doi: 10.1038/nature07709

Understanding cortical circuits will require mapping the connections between specific populations of neurons, as well as determining the dendritic locations where the synapses occur. The dendrites of individual cortical neurons overlap with numerous types of local and long-range excitatory axons, but axodendritic overlap is not always a good predictor of actual connection strength. Here we developed an efficient channelrhodopsin-2 (ChR2)-assisted method to map the spatial distribution of synaptic inputs, defined by presynaptic ChR2 expression, within the dendritic arborizations of recorded neurons. We expressed ChR2 in two thalamic nuclei, the whisker motor cortex and local excitatory neurons and mapped their synapses with pyramidal neurons in layers 3, 5A and 5B (L3, L5A and L5B) in the mouse barrel cortex. Within the dendritic arborizations of L3 cells, individual inputs impinged onto distinct single domains. These domains were arrayed in an orderly, monotonic pattern along the apical axis: axons from more central origins targeted progressively higher regions of the apical dendrites. In L5 arborizations, different inputs targeted separate basal and apical domains. Input to L3 and L5 dendrites in L1 was related to whisker movement and position, suggesting that these signals have a role in controlling the gain of their target neurons. Our experiments reveal high specificity in the subcellular organization of excitatory circuits.

View Publication Page
02/01/09 | A bright and photostable photoconvertible fluorescent protein.
McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL
Nature Methods. 2009 Feb;6(2):131-3. doi: 10.1038/nmeth.1296

Photoconvertible fluorescent proteins are potential tools for investigating dynamic processes in living cells and for emerging super-resolution microscopy techniques. Unfortunately, most probes in this class are hampered by oligomerization, small photon budgets or poor photostability. Here we report an EosFP variant that functions well in a broad range of protein fusions for dynamic investigations, exhibits high photostability and preserves the approximately 10-nm localization precision of its parent.

View Publication Page
02/01/09 | Automatic tracking of Escherichia coli in phase-contrast microscopy video.
Xie J, Khan S, Shah M
IEEE Transactions on Bio-Medical Engineering. 2009 Feb;56(2):390-9. doi: 10.1109/TBME.2008.2005956

In this paper, we present an automatic method for estimating the trajectories of Escherichia coli bacteria from in vivo phase-contrast microscopy. To address the low-contrast boundaries in cellular images, an adaptive kernel-based technique is applied to detect cells in each frame. In addition to intensity features, region homogeneity measure and class uncertainty are also applied in this detection technique. To track cells with complex motion, a novel matching gain measure is introduced to cope with the challenges, particularly the presence of low-contrast boundary, the variations of appearance, and the frequent overlapping and occlusion. For multicell tracking over time, an optimal matching strategy is introduced to improve the handling of cell collision and broken trajectories. The results of successful tracking of Escherichia coli from various phase-contrast sequences are reported and compared with manually determined trajectories, as well as those obtained from existing tracking schemes. The stability of the algorithm with different parameter values is also analyzed and discussed.

View Publication Page
Chklovskii Lab
01/30/09 | Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs.
Mishchenko Y
Journal of Neuroscience Methods. 2009 Jan 30;176(2):276-89. doi: 10.1016/j.jneumeth.2008.09.006

We describe an approach for automation of the process of reconstruction of neural tissue from serial section transmission electron micrographs. Such reconstructions require 3D segmentation of individual neuronal processes (axons and dendrites) performed in densely packed neuropil. We first detect neuronal cell profiles in each image in a stack of serial micrographs with multi-scale ridge detector. Short breaks in detected boundaries are interpolated using anisotropic contour completion formulated in fuzzy-logic framework. Detected profiles from adjacent sections are linked together based on cues such as shape similarity and image texture. Thus obtained 3D segmentation is validated by human operators in computer-guided proofreading process. Our approach makes possible reconstructions of neural tissue at final rate of about 5 microm3/manh, as determined primarily by the speed of proofreading. To date we have applied this approach to reconstruct few blocks of neural tissue from different regions of rat brain totaling over 1000microm3, and used these to evaluate reconstruction speed, quality, error rates, and presence of ambiguous locations in neuropil ssTEM imaging data.

View Publication Page
01/29/09 | Plasticity of burst firing induced by synergistic activation of metabotropic glutamate and acetylcholine receptors.
Moore SJ, Cooper DC, Spruston N
Neuron. 2009 Jan 29;61(2):287-300. doi: 10.1016/j.neuron.2008.12.013

Subiculum, the primary efferent pathway of hippocampus, participates in memory for spatial tasks, relapse to drug abuse, and temporal lobe seizures. Subicular pyramidal neurons exhibit low-threshold burst firing driven by a spike afterdepolarization. Here we report that burst firing can be regulated by stimulation of afferent projections to subiculum. Unlike synaptic plasticity, burst plasticity did not require synaptic depolarization, activation of AMPA or NMDA receptors, or action potential firing. Rather, enhancement of burst firing required synergistic activation of group I, subtype 1 metabotropic glutamate receptors (mGluRs) and muscarinic acetylcholine receptors (mAChR). When either of these receptors was blocked, a suppression of bursting was revealed, which in turn was blocked by antagonists of group I, subtype 5 mGluRs. These results indicate that the output of subiculum can be strongly and bidirectionally regulated by activation of glutamatergic inputs within the hippocampus and cholinergic afferents from the medial septum.

View Publication Page
01/29/09 | Rapid functional maturation of nascent dendritic spines.
Zito K, Scheuss V, Knott G, Hill T, Svoboda K
Neuron. 2009 Jan 29;61(2):247-58. doi: 10.1016/j.neuron.2008.10.054

Spine growth and retraction with synapse formation and elimination plays an important role in shaping brain circuits during development and in the adult brain, yet the temporal relationship between spine morphogenesis and the formation of functional synapses remains poorly defined. We imaged hippocampal pyramidal neurons to identify spines of different ages. We then used two-photon glutamate uncaging, whole-cell recording, and Ca(2+) imaging to analyze the properties of nascent spines and their older neighbors. New spines expressed glutamate-sensitive currents that were indistinguishable from mature spines of comparable volumes. Some spines exhibited negligible AMPA receptor-mediated responses, but the occurrence of these "silent" spines was uncorrelated with spine age. In contrast, NMDA receptor-mediated Ca(2+) accumulations were significantly lower in new spines. New spines reconstructed using electron microscopy made synapses. Our data support a model in which outgrowth and enlargement of nascent spines is tightly coupled to formation and maturation of glutamatergic synapses.

View Publication Page
Eddy/Rivas Lab
01/01/09 | A survey of nematode SmY RNAs.
Jones TA, Otto W, Marz M, Eddy SR, Stadler PF
RNA Biology. 2009 Jan-Mar;6(1):5-8

SmY RNAs are a family of approximately 70-90 nt small nuclear RNAs found in nematodes. In C. elegans, SmY RNAs copurify in a small ribonucleoprotein (snRNP) complex related to the SL1 and SL2 snRNPs that are involved in nematode mRNA trans-splicing. Here we describe a comprehensive computational analysis of SmY RNA homologs found in the currently available genome sequences. We identify homologs in all sequenced nematode genomes in class Chromadorea. We are unable to identify homologs in a more distantly related nematode species, Trichinella spiralis (class: Dorylaimia), and in representatives of non-nematode phyla that use trans-splicing. Using comparative RNA sequence analysis, we infer a conserved consensus SmY RNA secondary structure consisting of two stems flanking a consensus Sm protein binding site. A representative seed alignment of the SmY RNA family, annotated with the inferred consensus secondary structure, has been deposited with the Rfam RNA families database.

View Publication Page