Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2689 Janelia Publications

Showing 171-180 of 2689 results
10/03/24 | Maintaining and updating accurate internal representations of continuous variables with a handful of neurons.
Noorman M, Hulse BK, Jayaraman V, Romani S, Hermundstad AM
Nat Neurosci. 2024 Oct 03:. doi: 10.1038/s41593-024-01766-5

Many animals rely on persistent internal representations of continuous variables for working memory, navigation, and motor control. Existing theories typically assume that large networks of neurons are required to maintain such representations accurately; networks with few neurons are thought to generate discrete representations. However, analysis of two-photon calcium imaging data from tethered flies walking in darkness suggests that their small head-direction system can maintain a surprisingly continuous and accurate representation. We thus ask whether it is possible for a small network to generate a continuous, rather than discrete, representation of such a variable. We show analytically that even very small networks can be tuned to maintain continuous internal representations, but this comes at the cost of sensitivity to noise and variations in tuning. This work expands the computational repertoire of small networks, and raises the possibility that larger networks could represent more and higher-dimensional variables than previously thought.

View Publication Page
10/03/24 | New Statistical Metric for Robust Target Detection in Cryo-EM Using 2DTM
Zhang K, Cossio P, Rangan A, Lucas B, Grigorieff N
bioRxiv. 2024 Oct 03:. doi: 10.1101/2024.10.01.616095

2D template matching (2DTM) can be used to detect molecules and their assemblies in cellular cryo-EM images with high positional and orientational accuracy. While 2DTM successfully detects spherical targets such as large ribosomal subunits, challenges remain in detecting smaller and more aspherical targets in various environments. In this work, a novel 2DTM metric, referred to as the 2DTM p-value, is developed to extend the 2DTM framework to more complex applications. The 2DTM p-value combines information from two previously used 2DTM metrics, namely the 2DTM signal-to-noise ratio (SNR) and z-score, which are derived from the cross-correlation coefficient between the target and the template. The 2DTM p-value demonstrates robust detection accuracies under various imaging and sample conditions and outperforms the 2DTM SNR and z-score alone. Specifically, the 2DTM p-value improves the detection of aspherical targets such as a modified artificial tubulin patch particle (500 kDa) and a much smaller clathrin monomer (193 kDa) in simulated data. It also accurately recovers mature 60S ribosomes in yeast lamellae samples, even under conditions of increased Gaussian noise. The new metric will enable the detection of a wider variety of targets in both purified and cellular samples through 2DTM.

View Publication Page
10/02/24 | A Drosophila computational brain model reveals sensorimotor processing.
Shiu PK, Sterne GR, Spiller N, Franconville R, Sandoval A, Zhou J, Simha N, Kang CH, Yu S, Kim JS, Dorkenwald S, Matsliah A, Schlegel P, Yu S, McKellar CE, Sterling A, Costa M, Eichler K, Bates AS, Eckstein N, Funke J, Jefferis GS, Murthy M, Bidaye SS, Hampel S, Seeds AM, Scott K
Nature. 2024 Oct 02;634(8032):210-219. doi: 10.1038/s41586-024-07763-9

The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing-a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.

View Publication Page
10/02/24 | Connectomic reconstruction predicts visual features used for navigation.
Garner D, Kind E, Yuet Ha Lai J, Nern A, Zhao A, Houghton L, Sancer G, Wolff T, Rubin GM, Wernet MF, Kim SS
Nature. 2024 Oct 02;634(8032):181-190. doi: 10.1038/s41586-024-07967-z

Many animals use visual information to navigate, but how such information is encoded and integrated by the navigation system remains incompletely understood. In Drosophila melanogaster, EPG neurons in the central complex compute the heading direction by integrating visual input from ER neurons, which are part of the anterior visual pathway (AVP). Here we densely reconstruct all neurons in the AVP using electron-microscopy data. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons, which connect the medulla in the optic lobe to the small unit of the anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons, which connect the AOTUsu to the bulb neuropil; and ER neurons, which connect the bulb to the EPG neurons. On the basis of morphologies, connectivity between neural classes and the locations of synapses, we identify distinct information channels that originate from four types of MeTu neurons, and we further divide these into ten subtypes according to the presynaptic connections in the medulla and the postsynaptic connections in the AOTUsu. Using the connectivity of the entire AVP and the dendritic fields of the MeTu neurons in the optic lobes, we infer potential visual features and the visual area from which any ER neuron receives input. We confirm some of these predictions physiologically. These results provide a strong foundation for understanding how distinct sensory features can be extracted and transformed across multiple processing stages to construct higher-order cognitive representations.

View Publication Page
10/02/24 | Network statistics of the whole-brain connectome of Drosophila
Albert Lin , Runzhe Yang , Sven Dorkenwald , Arie Matsliah , Amy R. Sterling , Philipp Schlegel , Szi-chieh Yu , Claire E. McKellar , Marta Costa , Katharina Eichler , Alexander Shakeel Bates , Nils Eckstein , Jan Funke , Gregory S.X.E. Jefferis , Mala Murthy
Nature. 2024 Oct 02;634(8032):153–165. doi: 10.1038/s41586-024-07968-y

Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections, offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations, and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex (https://codex.flywire.ai) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.

View Publication Page
05/01/25 | The first complete 3D reconstruction and morphofunctional mapping of an insect eye
Makarova AA, Chua NJ, Diakova AV, Desyatirkina IA, Gunn P, Pang S, Xu CS, Hess HF, Chklovskii DB, Polilov AA
eLife. 2025 May 1:. doi: 10.7554/elife.103247

The structure of compound eyes in arthropods has been the subject of many studies, revealing important biological principles. Until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. By taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy, we present the first cellular-level reconstruction of the whole compound eye of an insect, the miniaturized parasitoid wasp Megaphragma viggianii. The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye contain nuclei. As in larger insects, the dorsal rim area of the eye in M. viggianii contains ommatidia that are believed to be specialized in polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three 'ectopic' photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general.

Preprint:  https://doi.org 10.1101/2024.09.30.615804

View Publication Page
09/26/24 | SciJava Ops: An Improved Algorithms Framework for Fiji and Beyond
Gabriel J. Selzer , Curtis T. Rueden , Mark C. Hiner , Edward L. Evans III , David Kolb , Marcel Wiedenmann , Christian Birkhold , Tim-Oliver Buchholz , Stefan Helfrich , Brian Northan , Alison Walter , Johannes Schindelin , Tobias Pietzsch , Stephan Saalfeld , Michael R. Berthold , Kevin W. Eliceiri
Front. Bioinform.. 2024 Sep 26;4:. doi: 10.3389/fbinf.2024.1435733

Decades of iteration on scientific imaging hardware and software has yielded an explosion in not only the size, complexity, and heterogeneity of image datasets but also in the tooling used to analyze this data. This wealth of image analysis tools, spanning different programming languages, frameworks, and data structures, is itself a problem for data analysts who must adapt to new technologies and integrate established routines to solve increasingly complex problems. While many “bridge” layers exist to unify pairs of popular tools, there exists a need for a general solution to unify new and existing toolkits. The SciJava Ops library presented here addresses this need through two novel principles. Algorithm implementations are declared as plugins called Ops, providing a uniform interface regardless of the toolkit they came from. Users express their needs declaratively to the Op environment, which can then find and adapt available Ops on demand. By using these principles instead of direct function calls, users can write streamlined workflows while avoiding the translation boilerplate of bridge layers. Developers can easily extend SciJava Ops to introduce new libraries and more efficient, specialized algorithm implementations, even immediately benefitting existing workflows. We provide several use cases showing both user and developer benefits, as well as benchmarking data to quantify the negligible impact on overall analysis performance. We have initially deployed SciJava Ops on the Fiji platform, however it would be suitable for integration with additional analysis platforms in the future.

View Publication Page
09/24/24 | Leg compliance is required to explain the ground reaction force patterns and speed ranges in different gaits
Safa AT, Biswas T, Ramakrishnan A, Bhandawat V
bioRxiv. 2024 Sep 24:. doi: 10.1101/2024.09.23.612940

Two simple models, vaulting over stiff legs and rebounding over compliant legs, are employed to describe the mechanics of legged locomotion. It is agreed that compliant legs are necessary for describing running and that legs are compliant while walking. Despite this agreement, stiff legs continue to be employed to model walking. Here, we show that leg compliance is necessary to model walking and, in the process, identify the principles that underpin two important features of legged locomotion: First, at the same speed, step length, and stance duration, multiple gaits that differ in the number of leg contraction cycles are possible. Among them, humans and other animals choose a gait with M-shaped vertical ground reaction forces because it is energetically favored. Second, the transition from walking to running occurs because of the inability to redirect the vertical component of the velocity during the double stance phase. Additionally, we also examine the limits of double spring-loaded pendulum (DSLIP) as a quantitative model for locomotion, and conclude that DSLIP is limited as a model for walking. However, insights gleaned from the analytical treatment of DSLIP are general and will inform the construction of more accurate models of walking.

View Publication Page
09/20/24 | A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging.
Farrants H, Shuai Y, Lemon WC, Monroy Hernandez C, Zhang D, Yang S, Patel R, Qiao G, Frei MS, Plutkis SE, Grimm JB, Hanson TL, Tomaska F, Turner GC, Stringer C, Keller PJ, Beyene AG, Chen Y, Liang Y, Lavis LD, Schreiter ER
Nat Methods. 2024 Sep 20:. doi: 10.1038/s41592-024-02411-6

Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca concentration using fluorescence lifetime imaging microscopy (FLIM).

View Publication Page
09/16/24 | Synaptic Specializations at Dopamine Release Sites Orchestrate Efficient and Precise Neuromodulatory Signaling
Bulumulla C, Walpita D, Iyer N, Eddison M, Patel R, Alcor D, Ackerman D, Beyene AG
bioRxiv. 2024 Sep 16:. doi: 10.1101/2024.09.16.613338

Dopamine is a key chemical neuromodulator that plays vital roles in various brain functions. Traditionally, neuromodulators like dopamine are believed to be released in a diffuse manner and are not commonly associated with synaptic structures where pre- and postsynaptic processes are closely aligned. Our findings challenge this conventional view. Using single-bouton optical measurements of dopamine release, we discovered that dopamine is predominantly released from varicosities that are juxtaposed against the processes of their target neurons. Dopamine axons specifically target neurons expressing dopamine receptors, forming synapses to release dopamine. Interestingly, varicosities that were not directly apposed to dopamine receptor-expressing processes or associated with neurons lacking dopamine receptors did not release dopamine, regardless of their vesicle content. The ultrastructure of dopamine release sites share common features of classical synapses. We further show that the dopamine released at these contact sites induces a precise, dopamine-gated biochemical response in the target processes. Our results indicate that dopamine release sites share key characteristics of conventional synapses that enable relatively precise and efficient neuromodulation of their targets.

View Publication Page