Filter
Associated Lab
- Aguilera Castrejon Lab (1) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (47) Apply Ahrens Lab filter
- Aso Lab (39) Apply Aso Lab filter
- Baker Lab (19) Apply Baker Lab filter
- Betzig Lab (99) Apply Betzig Lab filter
- Beyene Lab (8) Apply Beyene Lab filter
- Bock Lab (14) Apply Bock Lab filter
- Branson Lab (45) Apply Branson Lab filter
- Card Lab (34) Apply Card Lab filter
- Cardona Lab (44) Apply Cardona Lab filter
- Chklovskii Lab (10) Apply Chklovskii Lab filter
- Clapham Lab (12) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (8) Apply Darshan Lab filter
- Dickson Lab (32) Apply Dickson Lab filter
- Druckmann Lab (21) Apply Druckmann Lab filter
- Dudman Lab (34) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (4) Apply Egnor Lab filter
- Espinosa Medina Lab (12) Apply Espinosa Medina Lab filter
- Feliciano Lab (6) Apply Feliciano Lab filter
- Fetter Lab (31) Apply Fetter Lab filter
- Fitzgerald Lab (15) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (35) Apply Funke Lab filter
- Gonen Lab (59) Apply Gonen Lab filter
- Grigorieff Lab (34) Apply Grigorieff Lab filter
- Harris Lab (49) Apply Harris Lab filter
- Heberlein Lab (13) Apply Heberlein Lab filter
- Hermundstad Lab (19) Apply Hermundstad Lab filter
- Hess Lab (70) Apply Hess Lab filter
- Ilanges Lab (1) Apply Ilanges Lab filter
- Jayaraman Lab (40) Apply Jayaraman Lab filter
- Ji Lab (33) Apply Ji Lab filter
- Johnson Lab (1) Apply Johnson Lab filter
- Karpova Lab (13) Apply Karpova Lab filter
- Keleman Lab (8) Apply Keleman Lab filter
- Keller Lab (61) Apply Keller Lab filter
- Koay Lab (1) Apply Koay Lab filter
- Lavis Lab (127) Apply Lavis Lab filter
- Lee (Albert) Lab (29) Apply Lee (Albert) Lab filter
- Leonardo Lab (19) Apply Leonardo Lab filter
- Li Lab (3) Apply Li Lab filter
- Lippincott-Schwartz Lab (89) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (56) Apply Liu (Zhe) Lab filter
- Looger Lab (136) Apply Looger Lab filter
- Magee Lab (31) Apply Magee Lab filter
- Menon Lab (12) Apply Menon Lab filter
- Murphy Lab (6) Apply Murphy Lab filter
- O'Shea Lab (5) Apply O'Shea Lab filter
- Otopalik Lab (1) Apply Otopalik Lab filter
- Pachitariu Lab (30) Apply Pachitariu Lab filter
- Pastalkova Lab (5) Apply Pastalkova Lab filter
- Pavlopoulos Lab (7) Apply Pavlopoulos Lab filter
- Pedram Lab (3) Apply Pedram Lab filter
- Podgorski Lab (16) Apply Podgorski Lab filter
- Reiser Lab (43) Apply Reiser Lab filter
- Riddiford Lab (20) Apply Riddiford Lab filter
- Romani Lab (29) Apply Romani Lab filter
- Rubin Lab (101) Apply Rubin Lab filter
- Saalfeld Lab (44) Apply Saalfeld Lab filter
- Satou Lab (1) Apply Satou Lab filter
- Scheffer Lab (36) Apply Scheffer Lab filter
- Schreiter Lab (46) Apply Schreiter Lab filter
- Shroff Lab (24) Apply Shroff Lab filter
- Simpson Lab (18) Apply Simpson Lab filter
- Singer Lab (37) Apply Singer Lab filter
- Spruston Lab (55) Apply Spruston Lab filter
- Stern Lab (70) Apply Stern Lab filter
- Sternson Lab (47) Apply Sternson Lab filter
- Stringer Lab (27) Apply Stringer Lab filter
- Svoboda Lab (131) Apply Svoboda Lab filter
- Tebo Lab (7) Apply Tebo Lab filter
- Tervo Lab (9) Apply Tervo Lab filter
- Tillberg Lab (14) Apply Tillberg Lab filter
- Tjian Lab (17) Apply Tjian Lab filter
- Truman Lab (58) Apply Truman Lab filter
- Turaga Lab (34) Apply Turaga Lab filter
- Turner Lab (25) Apply Turner Lab filter
- Vale Lab (7) Apply Vale Lab filter
- Voigts Lab (2) Apply Voigts Lab filter
- Wang (Meng) Lab (11) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (5) Apply Wang (Shaohe) Lab filter
- Wu Lab (8) Apply Wu Lab filter
- Zlatic Lab (26) Apply Zlatic Lab filter
- Zuker Lab (5) Apply Zuker Lab filter
Associated Project Team
- CellMap (8) Apply CellMap filter
- COSEM (3) Apply COSEM filter
- FIB-SEM Technology (1) Apply FIB-SEM Technology filter
- Fly Descending Interneuron (10) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (14) Apply Fly Functional Connectome filter
- Fly Olympiad (5) Apply Fly Olympiad filter
- FlyEM (51) Apply FlyEM filter
- FlyLight (46) Apply FlyLight filter
- GENIE (40) Apply GENIE filter
- Integrative Imaging (1) Apply Integrative Imaging filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (16) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (26) Apply Tool Translation Team (T3) filter
- Transcription Imaging (45) Apply Transcription Imaging filter
Associated Support Team
- Project Pipeline Support (1) Apply Project Pipeline Support filter
- Anatomy and Histology (18) Apply Anatomy and Histology filter
- Cryo-Electron Microscopy (33) Apply Cryo-Electron Microscopy filter
- Electron Microscopy (14) Apply Electron Microscopy filter
- Gene Targeting and Transgenics (11) Apply Gene Targeting and Transgenics filter
- Integrative Imaging (14) Apply Integrative Imaging filter
- Invertebrate Shared Resource (39) Apply Invertebrate Shared Resource filter
- Janelia Experimental Technology (35) Apply Janelia Experimental Technology filter
- Management Team (1) Apply Management Team filter
- Molecular Genomics (15) Apply Molecular Genomics filter
- Primary & iPS Cell Culture (14) Apply Primary & iPS Cell Culture filter
- Project Technical Resources (38) Apply Project Technical Resources filter
- Quantitative Genomics (19) Apply Quantitative Genomics filter
- Scientific Computing Software (65) Apply Scientific Computing Software filter
- Scientific Computing Systems (6) Apply Scientific Computing Systems filter
- Viral Tools (14) Apply Viral Tools filter
- Vivarium (6) Apply Vivarium filter
Publication Date
- 2024 (190) Apply 2024 filter
- 2023 (168) Apply 2023 filter
- 2022 (166) Apply 2022 filter
- 2021 (174) Apply 2021 filter
- 2020 (177) Apply 2020 filter
- 2019 (177) Apply 2019 filter
- 2018 (206) Apply 2018 filter
- 2017 (186) Apply 2017 filter
- 2016 (191) Apply 2016 filter
- 2015 (195) Apply 2015 filter
- 2014 (190) Apply 2014 filter
- 2013 (136) Apply 2013 filter
- 2012 (112) Apply 2012 filter
- 2011 (98) Apply 2011 filter
- 2010 (61) Apply 2010 filter
- 2009 (56) Apply 2009 filter
- 2008 (40) Apply 2008 filter
- 2007 (21) Apply 2007 filter
- 2006 (3) Apply 2006 filter
2547 Janelia Publications
Showing 21-30 of 2547 resultsCognition is produced by the continuous interactions between many regions across the brain, but has typically been studied one brain region at a time. How signals in different regions coordinate to achieve a single coherent action remains unclear. Here, we address this question by characterizing the simultaneous interactions between up to 20 brain regions across the brain (10 targeted regions per hemisphere), of rats performing the “Poisson Clicks” task, a decision-making task that demands the gradual accumulation of momentary evidence. Using 8 Neuropixels probes in each animal, we recorded simultaneously in prefrontal cortex, striatum, motor cortex, hippocampus, amygdala, and thalamus. To assess decision-related interactions between regions, we quantified correlations of each region’s “decision variable”: moment-to-moment co-fluctuations along the axis in neural state space that best predicts the upcoming choice. This revealed a network of strongly correlated brain regions that include the dorsomedial frontal cortex (dmFC), anterior dorsal striatum (ADS), and primary motor cortex (M1), whose decision variables also led the rest of the brain. If coordinated activity within this subnetwork reflects an ongoing evidence accumulation process, these correlations should cease at the time of decision commitment. We therefore compared correlations before versus after “nTc”, a recently reported estimator for the time of internal decision commitment. We found that correlations in the decision variables between different brain regions decayed to near-zero after nTc. Additionally, we found that choice-predictive activity steadily increased over time before nTc, but abruptly stopped growing at nTc, consistent with an evidence accumulation process that has stopped evolving at that time. Assessing nTc from the activity of individual regions revealed that nTc could be reliably detected earlier in M1 than other regions. These results show that evidence accumulation involves coordination within a network of frontal cortical and striatal regions, and suggests that termination of this process may initiate in M1.
A key feature of biological and artificial neural networks is the progressive refinement of their neural representations with experience. In neuroscience, this fact has inspired several recent studies in sensory and motor systems. However, less is known about how higher associational cortical areas, such as the hippocampus, modify representations throughout the learning of complex tasks. Here we focus on associative learning, a process that requires forming a connection between the representations of different variables for appropriate behavioral response. We trained rats in a spatial-context associative task and monitored hippocampal neural activity throughout the entire learning period, over several days. This allowed us to assess changes in the representations of context, movement direction and position, as well as their relationship to behavior. We identified a hierarchical representational structure in the encoding of these three task variables that was preserved throughout learning. Nevertheless, we also observed changes at the lower levels of the hierarchy where context was encoded. These changes were local in neural activity space and restricted to physical positions where context identification was necessary for correct decision making, supporting better context decoding and contextual code compression. Our results demonstrate that the hippocampal code not only accommodates hierarchical relationships between different variables but also enables efficient learning through minimal changes in neural activity space. Beyond the hippocampus, our work reveals a representation learning mechanism that might be implemented in other biological and artificial networks performing similar tasks.
Zebrafish larvae are used to model the pathogenesis of multiple bacteria. This transparent model offers the unique advantage of allowing quantification of fluorescent bacterial burdens (fluorescent pixel counts: FPC) in vivo by facile microscopical methods, replacing enumeration of bacteria using time-intensive plating of lysates on bacteriological media. Accurate FPC measurements require laborious manual image processing to mark the outside borders of the animals so as to delineate the bacteria inside the animals from those in the culture medium that they are in. Here, we have developed an automated ImageJ/Fiji-based macro that accurately detect the outside borders of Mycobacterium marinum-infected larvae.
Assays that measure morphology, proliferation, motility, deformability, and migration are used to study the invasiveness of cancer cells. However, native invasive potential of cells may be hidden from these contextual metrics because they depend on culture conditions. We created a micropatterned chip that mimics the native environmental conditions, quantifies the invasive potential of tumor cells, and improves our understanding of the malignancy signatures. Unlike conventional assays, which rely on indirect measurements of metastatic potential, our method uses three-dimensional microchannels to measure the basal native invasiveness without chemoattractants or microfluidics. No change in cell death or proliferation is observed on our chips. Using six cancer cell lines, we show that our system is more sensitive than other motility-based assays, measures of nuclear deformability, or cell morphometrics. In addition to quantifying metastatic potential, our platform can distinguish between motility and invasiveness, help study molecular mechanisms of invasion, and screen for targeted therapeutics.
Dendritic cells (DCs) are specialized sentinel and APCs coordinating innate and adaptive immunity. Through proteins on their cell surface, DCs sense changes in the environment, internalize pathogens, present processed Ags, and communicate with other immune cells. By combining chemical labeling and quantitative mass spectrometry, we systematically profiled and compared the cell-surface proteomes of human primary conventional DCs (cDCs) in their resting and activated states. TLR activation by a lipopeptide globally reshaped the cell-surface proteome of cDCs, with >100 proteins upregulated or downregulated. By simultaneously elevating positive regulators and reducing inhibitory signals across multiple protein families, the remodeling creates a cell-surface milieu promoting immune responses. Still, cDCs maintain the stimulatory-to-inhibitory balance by leveraging a distinct set of inhibitory molecules. This analysis thus uncovers the molecular complexity and plasticity of the cDC cell surface and provides a roadmap for understanding cDC activation and signaling.
DaCapo is a specialized deep learning library tailored to expedite the training and application of existing machine learning approaches on large, near-isotropic image data. In this correspondence, we introduce DaCapo's unique features optimized for this specific domain, highlighting its modular structure, efficient experiment management tools, and scalable deployment capabilities. We discuss its potential to improve access to large-scale, isotropic image segmentation and invite the community to explore and contribute to this open-source initiative.
Natural physical, chemical, and biological dynamical systems are often complex, with heterogeneous components interacting in diverse ways. We show that graph neural networks can be designed to jointly learn the interaction rules and the structure of the heterogeneity from data alone. The learned latent structure and dynamics can be used to virtually decompose the complex system which is necessary to parameterize and infer the underlying governing equations. We tested the approach with simulation experiments of moving particles and vector fields that interact with each other. While our current aim is to better understand and validate the approach with simulated data, we anticipate it to become a generally applicable tool to uncover the governing rules underlying complex dynamics observed in nature.
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.
AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation. Here, we provide nanoscopic resolution of cilia in situ using large-scale electron microscopy volumes and immunostaining of mouse cerebella. In many granule cells, we found intracellular cilia, concealed from the external environment. Cilia were disassembled in differentiating granule cell neurons-in a process we call cilia deconstruction-distinct from premitotic cilia resorption in proliferating progenitors. In differentiating granule cells, cilia deconstruction involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Unlike ciliated neurons in other brain regions, our results show the deconstruction of concealed cilia in differentiating granule cells, which might prevent mitogenic hedgehog responsiveness. Ciliary deconstruction could be paradigmatic of cilia removal during differentiation in other tissues.