Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

1765 Janelia Publications

Showing 21-30 of 1765 results
05/03/20 | Co-evolving wing spots and mating displays are genetically separable traits in Drosophila.
Massey JH, Rice GR, Firdaus A, Chen C, Yeh S, Stern DL, Wittkopp PJ
Evolution. 2020 May 03:. doi: 10.1111/evo.13990

The evolution of sexual traits often involves correlated changes in morphology and behavior. For example, in Drosophila, divergent mating displays are often accompanied by divergent pigment patterns. To better understand how such traits co-evolve, we investigated the genetic basis of correlated divergence in wing pigmentation and mating display between the sibling species Drosophila elegans and D. gunungcola. Drosophila elegans males have an area of black pigment on their wings known as a wing spot and appear to display this spot to females by extending their wings laterally during courtship. By contrast, D. gunungcola lost both of these traits. Using Multiplexed Shotgun Genotyping (MSG), we identified a ∼440 kb region on the X chromosome that behaves like a genetic switch controlling the presence or absence of male-specific wing spots. This region includes the candidate gene optomotor-blind (omb), which plays a critical role in patterning the Drosophila wing. The genetic basis of divergent wing display is more complex, with at least two loci on the X chromosome and two loci on autosomes contributing to its evolution. Introgressing the X-linked region affecting wing spot development from D. gunungcola into D. elegans reduced pigmentation in the wing spots but did not affect the wing display, indicating that these are genetically separable traits. Consistent with this observation, broader sampling of wild D. gunungcola populations confirmed the wing spot and wing display are evolving independently: some D. gunungcola males performed wing displays similar to D. elegans despite lacking wing spots. These data suggest that correlated selection pressures rather than physical linkage or pleiotropy are responsible for the coevolution of these morphological and behavioral traits. They also suggest that the change in morphology evolved prior to the change in behavior. This article is protected by copyright. All rights reserved.

View Publication Page
05/01/20 | Ultrastructural visualization of 3D chromatin folding using volume electron microscopy and DNA in situ hybridization.
Trzaskoma P, Ruszczycki B, Lee B, Pels KK, Krawczyk K, Bokota G, Szczepankiewicz AA, Aaron J, Walczak A, Śliwińska MA, Magalska A, Kadlof M, Wolny A, Parteka Z, Arabasz S, Kiss-Arabasz M, Plewczyński D, Ruan Y, Wilczyński GM
Nature Communications. 2020 May 01;11(1):2120. doi: 10.1038/s41467-020-15987-2

The human genome is extensively folded into 3-dimensional organization. However, the detailed 3D chromatin folding structures have not been fully visualized due to the lack of robust and ultra-resolution imaging capability. Here, we report the development of an electron microscopy method that combines serial block-face scanning electron microscopy with in situ hybridization (3D-EMISH) to visualize 3D chromatin folding at targeted genomic regions with ultra-resolution (5 × 5 × 30 nm in xyz dimensions) that is superior to the current super-resolution by fluorescence light microscopy. We apply 3D-EMISH to human lymphoblastoid cells at a 1.7 Mb segment of the genome and visualize a large number of distinctive 3D chromatin folding structures in ultra-resolution. We further quantitatively characterize the reconstituted chromatin folding structures by identifying sub-domains, and uncover a high level heterogeneity of chromatin folding ultrastructures in individual nuclei, suggestive of extensive dynamic fluidity in 3D chromatin states.

View Publication Page
04/28/20 | A Sparse, Spatially Biased Subtype of Mature Granule Cell Dominates Recruitment in Hippocampal-Associated Behaviors.
Erwin SR, Sun W, Copeland M, Lindo S, Spruston N, Cembrowski MS
Cell Reports. 2020 Apr 28;31(4):107551. doi: 10.1016/j.celrep.2020.107551

Animals can store information about experiences by activating specific neuronal populations, and subsequent reactivation of these neural ensembles can lead to recall of salient experiences. In the hippocampus, granule cells of the dentate gyrus participate in such memory engrams; however, whether there is an underlying logic to granule cell participation has not been examined. Here, we find that a range of novel experiences preferentially activates granule cells of the suprapyramidal blade relative to the infrapyramidal blade. Motivated by this, we identify a suprapyramidal-blade-enriched population of granule cells with distinct spatial, morphological, physiological, and developmental properties. Via transcriptomics, we map these traits onto a sparse and discrete granule cell subtype that is recruited at a 10-fold greater frequency than expected by subtype prevalence, constituting the majority of all recruited granule cells. Thus, in behaviors known to involve hippocampal-dependent memory formation, a rare and spatially localized subtype dominates overall granule cell recruitment.

View Publication Page

The brainstem contains several neuronal populations, heterogeneous in term of neurotransmitter/neuropeptide content, which are important for controlling various aspects of the REM phase of sleep. Among these populations are the Calbindin (Calb)-immunoreactive NPCalb neurons, located in the Nucleus papilio, within the dorsal paragigantocellular nucleus (DPGi), and recently shown to control eye movement during the REM phase of sleep. We performed in depth data-mining of the in-situ hybridization data collected at the Allen Brain Atlas, in order to identify potentially interesting genes expressed in this brainstem nucleus. Our attention focused on genes encoding neuropeptides, including Cart (Cocaine and Amphetamine Regulated Transcripts) and Nesfatin1. While Nesfatin1 appeared ubiquitously expressed in this Calb-positive neuronal population, Cart was co-expressed in only a subset of these glutamatergic NPCalb neurons. Furthermore, a REM sleep deprivation and rebound assay performed with mice revealed that the Cart-positive neuronal population within the DPGi was activated during REM sleep (as measured by c-fos immunoreactivity), suggesting a role of this neuropeptide in regulating some aspects of REM sleep. The assembled information could afford functional clues to investigators, conducive to further experimental pursuits.

View Publication Page
04/27/20 | Live-cell single particle imaging reveals the role of RNA polymerase II in histone H2A.Z eviction.
Ranjan A, Nguyen VQ, Liu S, Wisniewski J, Kim JM, Tang X, Mizuguchi G, Elalaoui E, Nickels TJ, Jou V, English BP, Zheng Q, Luk E, Lavis LD, Lionnet T, Wu C
eLife. 2020 Apr 27;9:. doi: 10.7554/eLife.55667

The H2A.Z histone variant, a genome-wide hallmark of permissive chromatin, is enriched near transcription start sites in all eukaryotes. H2A.Z is deposited by the SWR1 chromatin remodeler and evicted by unclear mechanisms. We tracked H2A.Z in living yeast at single-molecule resolution, and found that H2A.Z eviction is dependent on RNA Polymerase II (Pol II) and the Kin28/Cdk7 kinase, which phosphorylates Serine 5 of heptapeptide repeats on the carboxy-terminal domain of the largest Pol II subunit Rpb1. These findings link H2A.Z eviction to transcription initiation, promoter escape and early elongation activities of Pol II. Because passage of Pol II through +1 nucleosomes genome-wide would obligate H2A.Z turnover, we propose that global transcription at yeast promoters is responsible for eviction of H2A.Z. Such usage of yeast Pol II suggests a general mechanism coupling eukaryotic transcription to erasure of the H2A.Z epigenetic signal.

View Publication Page
04/23/20 | Effect of circuit structure on odor representation in the insect olfactory system.
Rajagopalan A, Assisi C
eNeuro. 2020 Apr 23:. doi: 10.1523/ENEURO.0130-19.2020

In Neuroscience, the structure of a circuit has often been used to intuit function - an inversion of Louis Kahn's famous dictum, `Form follows function' (Kristan and Katz 2006). However, different brain networks may utilize different network architectures to solve the same problem. The olfactory circuits of two insects, the Locust, and the fruit fly, , serve the same function - to identify and discriminate odors. The neural circuitry that achieves this shows marked structural differences. Projection neurons (PN) in the antennal lobe (AL) innervate Kenyon cells (KC) of the mushroom body (MB). In locust, each KC receives inputs from ∼50% PNs, a scheme that maximizes the difference between inputs to any two of ∼50,000 KCs. In contrast, in drosophila, this number is only 5% and appears sub-optimal. Using a computational model of the olfactory system, we show the activity of KCs is sufficiently high-dimensional that it can separate similar odors regardless of the divergence of PN-KC connections. However, when temporal patterning encodes odor attributes, dense connectivity outperforms sparse connections.Increased separability comes at the cost of reliability. The disadvantage of sparse connectivity can be mitigated by incorporating other aspects of circuit architecture seen in drosophila. Our simulations predict that drosophila and locust circuits lie at different ends of a continuum where the drosophila gives up on the ability to resolve similar odors to generalize across varying environments, while the locust separates odor representations but risks misclassifying noisy variants of the same odor. How does the structure of a network affect its function? We address this question in the context of two olfactory systems that serve the same function, to distinguish the attributes of different odorants, but do so using markedly distinct architectures. In the locust, the probability of connections between projection neurons and Kenyon cells - a layer downstream - is nearly 50%. In contrast, this number is merely 5% in drosophila. We developed computational models of these networks to understand the relative advantages of each connectivity. Our analysis reveals that the two systems exist along a continuum of possibilities that balance two conflicting goals - separating the representations of similar odors while grouping together noisy variants of the same odor.

View Publication Page
04/23/20 | Frontline science: dynamic cellular and subcellular features of migrating leukocytes revealed by in vivo lattice lightsheet microscopy.
Manley HR, Potter DL, Heddleston JM, Chew T, Keightley MC, Lieschke GJ
Journal of Leukocyte Biology. 2020 Apr 23:. doi: 10.1002/JLB.3HI0120-589R

Neutrophil and macrophage (Mϕ) migration underpin the inflammatory response. However, the fast velocity, multidirectional instantaneous movement, and plastic, ever-changing shape of phagocytes confound high-resolution intravital imaging. Lattice lightsheet microscopy (LLSM) captures highly dynamic cell morphology at exceptional spatiotemporal resolution. We demonstrate the first extensive application of LLSM to leukocytes in vivo, utilizing optically transparent zebrafish, leukocyte-specific reporter lines that highlighted subcellular structure, and a wounding assay for leukocyte migration. LLSM revealed details of migrating leukocyte morphology, and permitted intricate, volumetric interrogation of highly dynamic activities within their native physiological setting. Very thin, recurrent uropod extensions must now be considered a characteristic feature of migrating neutrophils. LLSM resolved trailing uropod extensions, demonstrating their surprising length, and permitting quantitative assessment of cytoskeletal contributions to their evanescent form. Imaging leukocytes in blood vessel microenvironments at LLSM's spatiotemporal resolution displayed blood-flow-induced neutrophil dynamics and demonstrated unexpected leukocyte-endothelial interactions such as leukocyte-induced endothelial deformation against the intravascular pressure. LLSM of phagocytosis and cell death provided subcellular insights and uncovered novel behaviors. Collectively, we provide high-resolution LLSM examples of leukocyte structures (filopodia lamellipodia, uropod extensions, vesicles), and activities (interstitial and intravascular migration, leukocyte rolling, phagocytosis, cell death, and cytoplasmic ballooning). Application of LLSM to intravital leukocyte imaging sets the stage for transformative studies into the cellular and subcellular complexities of phagocyte biology.

View Publication Page
04/17/20 | Basal Ganglia Circuits for Action Specification.
Park J, Coddington LT, Dudman JT
Annual Review Neuroscience. 2020 Apr 17:. doi: 10.1146/annurev-neuro-070918-050452

Behavior is readily classified into patterns of movements with inferred common goals-actions. Goals may be discrete; movements are continuous. Through the careful study of isolated movements in laboratory settings, or via introspection, it has become clear that animals can exhibit exquisite graded specification to their movements. Moreover, graded control can be as fundamental to success as the selection of which action to perform under many naturalistic scenarios: a predator adjusting its speed to intercept moving prey, or a tool-user exerting the perfect amount of force to complete a delicate task. The basal ganglia are a collection of nuclei in vertebrates that extend from the forebrain (telencephalon) to the midbrain (mesencephalon), constituting a major descending extrapyramidal pathway for control over midbrain and brainstem premotor structures. Here we discuss how this pathway contributes to the continuous specification of movements that endows our voluntary actions with vigor and grace. Expected final online publication date for the , Volume 43 is July 8, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
04/17/20 | Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b..
Weber C, Zhou Y, Lee JG, Looger LL, Qian G, Ge C, Capel B
Science. 2020 Apr 17;368(6488):303-306. doi: 10.1126/science.aaz4165

In many reptiles, including the red-eared slider turtle (), sex is determined by ambient temperature during embryogenesis. We previously showed that the epigenetic regulator is elevated at the male-producing temperature and essential to activate the male pathway. In this work, we established a causal link between temperature and transcriptional regulation of We show that signal transducer and activator of transcription 3 (STAT3) is phosphorylated at the warmer, female-producing temperature, binds the locus, and represses transcription, blocking the male pathway. Influx of Ca, a mediator of STAT3 phosphorylation, is elevated at the female temperature and acts as a temperature-sensitive regulator of STAT3 activation.

View Publication Page
Cardona Lab
04/17/20 | The corazonin-PTTH neuronal axis controls systemic body growth by regulating basal ecdysteroid biosynthesis in Drosophila melanogaster.
Imura E, Shimada-Niwa Y, Nishimura T, Hückesfeld S, Schlegel P, Ohhara Y, Kondo S, Tanimoto H, Cardona A, Pankratz MJ, Niwa R
Current Biology. 2020 Apr 17:. doi: 10.1016/j.cub.2020.03.050

Steroid hormones play key roles in development, growth, and reproduction in various animal phyla [1]. The insect steroid hormone, ecdysteroid, coordinates growth and maturation, represented by molting and metamorphosis [2]. In Drosophila melanogaster, the prothoracicotropic hormone (PTTH)-producing neurons stimulate peak levels of ecdysteroid biosynthesis for maturation [3]. Additionally, recent studies on PTTH signaling indicated that basal levels of ecdysteroid negatively affect systemic growth prior to maturation [4-8]. However, it remains unclear how PTTH signaling is regulated for basal ecdysteroid biosynthesis. Here, we report that Corazonin (Crz)-producing neurons regulate basal ecdysteroid biosynthesis by affecting PTTH neurons. Crz belongs to gonadotropin-releasing hormone (GnRH) superfamily, implying an analogous role in growth and maturation [9]. Inhibition of Crz neuronal activity increased pupal size, whereas it hardly affected pupariation timing. This phenotype resulted from enhanced growth rate and a delay in ecdysteroid elevation during the mid-third instar larval (L3) stage. Interestingly, Crz receptor (CrzR) expression in PTTH neurons was higher during the mid- than the late-L3 stage. Silencing of CrzR in PTTH neurons increased pupal size, phenocopying the inhibition of Crz neuronal activity. When Crz neurons were optogenetically activated, a strong calcium response was observed in PTTH neurons during the mid-L3, but not the late-L3, stage. Furthermore, we found that octopamine neurons contact Crz neurons in the subesophageal zone (SEZ), transmitting signals for systemic growth. Together, our results suggest that the Crz-PTTH neuronal axis modulates ecdysteroid biosynthesis in response to octopamine, uncovering a regulatory neuroendocrine system in the developmental transition from growth to maturation.

View Publication Page