Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

1424 Janelia Publications

Showing 21-30 of 1424 results
08/20/18 | Building a functional connectome of the central complex.
Franconville R, Beron C, Jayaraman V
eLife. 2018 Aug 20;7:. doi: 10.7554/eLife.37017

The central complex is a highly conserved insect brain region composed of morphologically stereotyped neurons that arborize in distinctively shaped substructures. The region is implicated in a wide range of behaviors and several modeling studies have explored its circuit computations. Most studies have relied on assumptions about connectivity between neurons based on their overlap in light microscopy images. Here, we present an extensive functional connectome of Drosophila melanogaster's central complex at cell-type resolution. Using simultaneous optogenetic stimulation, calcium imaging and pharmacology, we tested the connectivity between 70 presynaptic-to-postsynaptic cell-type pairs. We identi1ed numerous inputs to the central complex, but only a small number of output channels. Additionally, the connectivity of this highly recurrent circuit appears to be sparser than anticipated from light microscopy images. Finally, the connectivity matrix highlights the potentially critical role of a class of bottleneck interneurons. All data is provided for interactive exploration on a website.

View Publication Page
08/20/18 | In vivo measurement of afferent activity with axon-specific calcium imaging.
Broussard GJ, Liang Y, Fridman M, Unger EK, Meng G, Xiao X, Ji N, Petreanu L, Tian L
Nature Neuroscience. 2018 Aug 20:. doi: 10.1038/s41593-018-0211-4

In vivo calcium imaging from axons provides direct interrogation of afferent neural activity, informing the neural representations that a local circuit receives. Unlike in somata and dendrites, axonal recording of neural activity-both electrically and optically-has been difficult to achieve, thus preventing comprehensive understanding of neuronal circuit function. Here we developed an active transportation strategy to enrich GCaMP6, a genetically encoded calcium indicator, uniformly in axons with sufficient brightness, signal-to-noise ratio, and photostability to allow robust, structure-specific imaging of presynaptic activity in awake mice. Axon-targeted GCaMP6 enables frame-to-frame correlation for motion correction in axons and permits subcellular-resolution recording of axonal activity in previously inaccessible deep-brain areas. We used axon-targeted GCaMP6 to record layer-specific local afferents without contamination from somata or from intermingled dendrites in the cortex. We expect that axon-targeted GCaMP6 will facilitate new applications in investigating afferent signals relayed by genetically defined neuronal populations within and across specific brain regions.

View Publication Page
08/20/18 | Multiple animals tracking in video using part affinity fields
Rodriguez IF, Megret R, Egnor R, Branson K, Agosto JL, Giray T, Acuna E
Visual observation and analysis of Vertebrate And Insect Behavior 2018. 2018 Aug 20:

In this work, we address the problem of pose detection and tracking of multiple individuals for the study of behaviour in insects and animals. Using a Deep Neural Network architecture, precise detection and association of the body parts can be performed. The models are learned based on user-annotated training videos, which gives flexibility to the approach. This is illustrated on two different animals: honeybees and mice, where very good performance in part recognition and association are observed despite the presence of multiple interacting individuals.

View Publication Page
08/17/18 | mTOR-dependent phosphorylation controls TFEB nuclear export.
Napolitano G, Esposito A, Choi H, Matarese M, Benedetti V, Di Malta C, Monfregola J, Medina DL, Lippincott-Schwartz J, Ballabio A
Nature Communications. 2018 Aug 17;9(1):3312. doi: 10.1038/s41467-018-05862-6

During starvation the transcriptional activation of catabolic processes is induced by the nuclear translocation and consequent activation of transcription factor EB (TFEB), a master modulator of autophagy and lysosomal biogenesis. However, how TFEB is inactivated upon nutrient refeeding is currently unknown. Here we show that TFEB subcellular localization is dynamically controlled by its continuous shuttling between the cytosol and the nucleus, with the nuclear export representing a limiting step. TFEB nuclear export is mediated by CRM1 and is modulated by nutrient availability via mTOR-dependent hierarchical multisite phosphorylation of serines S142 and S138, which are localized in proximity of a nuclear export signal (NES). Our data on TFEB nucleo-cytoplasmic shuttling suggest an unpredicted role of mTOR in nuclear export.

View Publication Page
08/17/18 | The development and enhancement of FRAP as a key tool for investigating protein dynamics.
Lippincott-Schwartz J, Snapp EL, Phair RD
Biophysical Journal. 2018 Aug 17;115(7):1146-55. doi: 10.1016/j.bpj.2018.08.007

The saga of fluorescence recovery after photobleaching (FRAP) illustrates how disparate technical developments impact science. Starting with the classic 1976 Axelrod et al. work in Biophysical Journal, FRAP (originally fluorescence photobleaching recovery) opened the door to extraction of quantitative information from photobleaching experiments, laying the experimental and theoretical groundwork for quantifying both the mobility and the mobile fraction of a labeled population of proteins. Over the ensuing years, FRAP's reach dramatically expanded, with new developments in GFP technology and turn-key confocal microscopy, which enabled measurement of protein diffusion and binding/dissociation rates in virtually every compartment within the cell. The FRAP technique and data catalyzed an exchange of ideas between biophysicists studying membrane dynamics, cell biologists focused on intracellular dynamics, and systems biologists modeling the dynamics of cell activity. The outcome transformed the field of cellular biology, leading to a fundamental rethinking of long-held theories of cellular dynamism. Here, we review the pivotal FRAP studies that made these developments and conceptual changes possible, which gave rise to current models of complex cell dynamics.

View Publication Page
08/15/18 | Optimization of fluorophores for chemical tagging and immunohistochemistry of Drosophila neurons.
Meissner GW, Grimm JB, Johnston RM, Sutcliffe B, Ng J, Jefferis GS, Cachero S, Lavis LD, Malkesman O
PLoS One. 2018 Aug 15;13(8):e0200759. doi: 10.1371/journal.pone.0200759

The use of genetically encoded 'self-labeling tags' with chemical fluorophore ligands enables rapid labeling of specific cells in neural tissue. To improve the chemical tagging of neurons, we synthesized and evaluated new fluorophore ligands based on Cy, Janelia Fluor, Alexa Fluor, and ATTO dyes and tested these with recently improved Drosophila melanogaster transgenes. We found that tissue clearing and mounting in DPX substantially improves signal quality when combined with specific non-cyanine fluorophores. We compared and combined this labeling technique with standard immunohistochemistry in the Drosophila brain.

View Publication Page
08/14/18 | Structure of the mammalian TRPM7, a magnesium channel required during embryonic development.
Duan J, Li Z, Li J, Hulse RE, Santa-Cruz A, Valinsky WC, Abiria SA, Krapivinsky G, Zhang J, Clapham DE
Proceedings of the National Academy of Sciences of the United States of America. 2018 Aug 14;115(35):E8201-10. doi: 10.1073/pnas.1810719115

The transient receptor potential ion channel subfamily M, member 7 (TRPM7), is a ubiquitously expressed protein that is required for mouse embryonic development. TRPM7 contains both an ion channel and an α-kinase. The channel domain comprises a nonselective cation channel with notable permeability to Mg and Zn Here, we report the closed state structures of the mouse TRPM7 channel domain in three different ionic conditions to overall resolutions of 3.3, 3.7, and 4.1 Å. The structures reveal key residues for an ion binding site in the selectivity filter, with proposed partially hydrated Mg ions occupying the center of the conduction pore. In high [Mg], a prominent external disulfide bond is found in the pore helix, which is essential for ion channel function. Our results provide a structural framework for understanding the TRPM1/3/6/7 subfamily and extend the knowledge base upon which to study the diversity and evolution of TRP channels.

View Publication Page
08/13/18 | Triggered cell-cell fusion assay for cytoplasmic and organelle intermixing studies.
Feliciano D, Nixon-Abell J, Lippincott-Schwartz J
Current Protocols in Cell Biology. 2018 Aug 13:e61. doi: 10.1002/cpcb.61

Different multicellular organisms undergo cell-cell fusion to form functional syncytia that support specialized functions necessary for proper development and survival. For years, monitoring the structural consequences of this process using live-cell imaging has been challenging due to the unpredictable timing of cell fusion events in tissue systems. Here we present a triggered vesicular stomatitis virus G-protein (VSV-G)-mediated cell-cell fusion assay that can be used to synchronize fusion between cells. This allows the study of cellular changes that occur during cell fusion. The process is induced using a fast wash of low pH isotonic buffer, promoting the fusion of plasma membranes of two or more adjacent cells within seconds. This approach is suitable for studying mixing of small cytoplasmic molecules between fusing cells as well as changes in organelle distribution and dynamics. © 2018 by John Wiley & Sons, Inc.

View Publication Page
08/07/18 | Inhibitory control of prefrontal cortex by the claustrum.
Jackson J, Karnani MM, Zemelman BV, Burdakov D, Lee AK
Neuron. 2018 Aug 07;99(5):1029-39. doi: 10.1016/j.neuron.2018.07.031

The claustrum is a small subcortical nucleus that has extensive excitatory connections with many cortical areas. While the anatomical connectivity from the claustrum to the cortex has been studied intensively, the physiological effect and underlying circuit mechanisms of claustrocortical communication remain elusive. Here we show that the claustrum provides strong, widespread, and long-lasting feedforward inhibition of the prefrontal cortex (PFC) sufficient to silence ongoing neural activity. This claustrocortical feedforward inhibition was predominantly mediated by interneurons containing neuropeptide Y, and to a lesser extent those containing parvalbumin. Therefore, in contrast to other long-range excitatory inputs to the PFC, the claustrocortical pathway is designed to provide overall inhibition of cortical activity. This unique circuit organization allows the claustrum to rapidly and powerfully suppress cortical networks and suggests a distinct role for the claustrum in regulating cognitive processes in prefrontal circuits.

View Publication Page

The central complex, a set of neuropils in the center of the insect brain, plays a crucial role in spatial aspects of sensory integration and motor control. Stereotyped neurons interconnect these neuropils with one another and with accessory structures. We screened over 5000 Drosophila melanogaster GAL4 lines for expression in two neuropils, the noduli (NO) of the central complex and the asymmetrical body (AB), and used multicolor stochastic labelling to analyze the morphology, polarity and organization of individual cells in a subset of the GAL4 lines that showed expression in these neuropils. We identified nine NO and three AB cell types and describe them here. The morphology of the NO neurons suggests that they receive input primarily in the lateral accessory lobe and send output to each of the six paired noduli. We demonstrate that the AB is a bilateral structure which exhibits asymmetry in size between the left and right bodies. We show that the AB neurons directly connect the AB to the central complex and accessory neuropils, that they target both the left and right ABs, and that one cell type preferentially innervates the right AB. We propose that the AB be considered a central complex neuropil in Drosophila. Finally, we present highly restricted GAL4 lines for most identified protocerebral bridge, NO and AB cell types. These lines, generated using the split-GAL4 method, will facilitate anatomical studies, behavioral assays, and physiological experiments. 

View Publication Page