Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2673 Janelia Publications

Showing 21-30 of 2673 results
05/15/25 | Proprioceptive limit detectors mediate sensorimotor control of the Drosophila leg
Pratt BG, Dallmann CJ, Chou GM, Siwanowicz I, Walling-Bell S, Cook A, Sustar A, Azevedo A, Tuthill JC
bioRxiv. 2025 May 15:. doi: 10.1101/2025.05.15.654260

Many animals possess mechanosensory neurons that fire when a limb nears the limit of its physical range, but the function of these proprioceptive limit detectors remains poorly understood. Here, we investigate a class of proprioceptors on the Drosophila leg called hair plates. Using calcium imaging in behaving flies, we find that a hair plate on the fly coxa (CxHP8) detects the limits of anterior leg movement. Reconstructing CxHP8 axons in the connectome, we found that they are wired to excite posterior leg movement and inhibit anterior leg movement. Consistent with this connectivity, optogenetic activation of CxHP8 neurons elicited posterior postural reflexes, while silencing altered the swing-to-stance transition during walking. Finally, we use comprehensive reconstruction of peripheral morphology and downstream connectivity to predict the function of other hair plates distributed across the fly leg. Our results suggest that each hair plate is specialized to control specific sensorimotor reflexes that are matched to the joint limit it detects. They also illustrate the feasibility of predicting sensorimotor reflexes from a connectome with identified proprioceptive inputs and motor outputs.

View Publication Page
05/13/25 | Unlocking in vivo metabolic insights with vibrational microscopy.
Chen T, Savini M, Wang MC
Nat Methods. 2025 May 13;22(5):886-889. doi: 10.1038/s41592-025-02616-3
05/13/25 | Unlocking in vivo metabolic insights with vibrational microscopy.
Chen T, Savini M, Wang MC
Nat Methods. 2025 May 13;22(5):886-889. doi: 10.1038/s41592-025-02616-3

No abstract available.

View Publication Page
05/15/25 | Norepinephrine changes behavioral state via astroglial purinergic signaling
Chen AB, Duque M, Wang VM, Dhanasekar M, Mi X, Rymbek A, Tocquer L, Narayan S, Prober D, Yu G, Wyart C, Engert F, Ahrens MB
Science. 2025 May 15:. doi: 10.1126/science.adq5233

Both neurons and glia communicate through diffusible neuromodulators; however, how neuron-glial interactions in such neuromodulatory networks influence circuit computation and behavior is unclear. During futility-induced behavioral transitions in the larval zebrafish, the neuromodulator norepinephrine (NE) drives fast excitation and delayed inhibition of behavior and circuit activity. We found that astroglial purinergic signaling implements the inhibitory arm of this motif. In larval zebrafish, NE triggers astroglial release of adenosine triphosphate (ATP), extracellular conversion of ATP into adenosine, and behavioral suppression through activation of hindbrain neuronal adenosine receptors. Our results suggest a computational and behavioral role for an evolutionarily conserved astroglial purinergic signaling axis in NE-mediated behavioral and brain state transitions and position astroglia as important effectors in neuromodulatory signaling.

 

Preprint: https://www.biorxiv.org/content/early/2024/05/23/2024.05.23.595576

View Publication Page
05/13/25 | Quantitative spatial analysis of chromatin biomolecular condensates using cryoelectron tomography.
Zhou H, Hutchings J, Shiozaki M, Zhao X, Doolittle LK, Yang S, Yan R, Jean N, Riggi M, Yu Z, Villa E, Rosen MK
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2426449122. doi: 10.1073/pnas.2426449122

Phase separation is an important mechanism to generate certain biomolecular condensates and organize the cell interior. Condensate formation and function remain incompletely understood due to difficulties in visualizing the condensate interior at high resolution. Here, we analyzed the structure of biochemically reconstituted chromatin condensates through cryoelectron tomography. We found that traditional blotting methods of sample preparation were inadequate, and high-pressure freezing plus focused ion beam milling was essential to maintain condensate integrity. To identify densely packed molecules within the condensate, we integrated deep learning-based segmentation with context-aware template matching. Our approaches were developed on chromatin condensates and were also effective on condensed regions of in situ native chromatin. Using these methods, we determined the average structure of nucleosomes to 6.1 and 12 Å resolution in reconstituted and native systems, respectively, found that nucleosomes form heterogeneous interaction networks in both cases, and gained insight into the molecular origins of surface tension in chromatin condensates. Our methods should be applicable to biomolecular condensates containing large and distinctive components in both biochemical reconstitutions and certain cellular systems.

Preprint: https://www.biorxiv.org/content/10.1101/2024.12.01.626131v2

View Publication Page
Integrative Imaging
05/06/25 | Challenges of microscopy technology dissemination to resource-constrained communities.
Aaron JS, Jacobs CA, Malacrida L, Keppler A, French P, Fletcher DA, Wood C, Brown CM, Wright GD, Ogawa S, Maina M, Chew T
Nat Methods. 2025 May 06:. doi: 10.1038/s41592-025-02690-7

No abstract available.

View Publication Page
05/06/25 | History of hypoxia exposure aids future cell invasion according to cell type and collagen density.
Almeida JA, Avila DB, Longmore GD, Pathak A
Mol Biol Cell. 2025 May 06:mbcE24120580. doi: 10.1091/mbc.E24-12-0580

In cancer progression, tumor microenvironments progressively become denser and hypoxic, and cell migrate toward higher oxygen levels as they invade across the tumor-stromal boundary. While cell invasion dependence on optimal collagen density is well appreciated, it remains unclear whether past oxygen conditions alter future invasion phenotype of cells. Here, we show that normal human mammary epithelial cells (MCF10A) and leader-like human breast tumor cells (BT549) undergo higher rates of invasion and collagen deformation after past exposure to hypoxia, compared to normoxia controls. Upon increasing collagen density by ∼50%, cell invasion under normoxia reduced, as expected due to the increased matrix crowding. However, surprisingly, past hypoxia increased cell invasion in future normoxic dense collagen, with more pronounced invasion of cancer cells. This culmination of cancer-related conditions of hypoxia history, tumor cell, and denser collagen led to more aggressive invasion phenotypes. We found that hypoxia-primed cancer cells produce laminin332, a basement membrane protein required for cell-matrix adhesions, which could explain the additional adhesion feedback from the matrix that led to invasion after hypoxia priming. Depletion of Cdh3 disrupts the hypoxia-dependent laminin production and thus disables the rise in rates of cancer cell invasion and collagen deformation caused by hypoxia memory. These findings highlight the importance of considering past oxygen conditions in combination with current mechanical composition of tissues to better understand tumor invasion in physically evolving tumor microenvironments.

View Publication Page
05/06/25 | Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster
Erica Ehrhardt , Samuel C Whitehead , Shigehiro Namiki , Ryo Minegishi , Igor Siwanowicz , Kai Feng , Hideo Otsuna , FlyLight Project Team , Geoffrey W Meissner , David Stern , Jim Truman , David Shepherd , Michael H. Dickinson , Kei Ito , Barry J Dickson , Itai Cohen , Gwyneth M Card , Wyatt Korff
eLife. 2025 May 06:. doi: 10.7554/eLife.106548.1

To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their functions. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse transgenic driver lines targeting 196 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. In addition, we identified correspondences between the cells in this collection and a recent connectomic data set of the ventral nerve cord. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neuronal circuits and connectivity of premotor circuits while linking them to behavioral outputs.

View Publication Page
05/02/25 | Chromatix: a differentiable, GPU-accelerated wave-optics library
Deb D, Both G, Bezzam E, Kohli A, Yang S, Chaware A, Allier C, Cai C, Anderberg G, Eybposh MH, Schneider MC, Heintzmann R, Rivera-Sanchez FA, Simmerer C, Meng G, Tormes-Vaquerano J, Han S, Shanmugavel SC, Maruvada T, Yang X, Kim Y, Diederich B, Joo C, Waller L, Durr NJ, Pégard NC, La Rivière PJ, Horstmeyer R, Chowdhury S, Turaga SC
bioRxiv. 2025 May 2:. doi: 10.1101/2025.04.29.651152

Modern microscopy methods incorporate computational modeling of optical systems as an integral part of the imaging process, either to solve inverse problems or enable optimization of the optical system design. These methods often depend on differentiable simulations of optical systems, yet no standardized framework exists—forcing computational optics researchers to repeatedly and independently implement simulations that are prone to errors, difficult to reuse in other applications, and often computationally suboptimal. These common problems limit the potential impact of computational optics as a field. We present Chromatix: an open-source, GPU-accelerated differentiable wave optics library. Chromatix builds on JAX to enable fast simulation of diverse optical systems and inverse problem solving, scaling these simulations from single-CPU laptops to multi-GPU servers. The library implements various optical elements (e.g., lenses, polarizers and spatial light modulators) and multiple light propagation models (e.g., Fresnel approximation, angular spectrum and off-axis propagation) that can be flexibly combined to model various computational optics applications such as snapshot microscopy, holography, and phase retrieval of multiple scattering samples. These simulations can be automatically parallelized to scale across multiple GPUs with a single-line change to the modeling code, enabling simulation and optimization of previously impractical optical system designs. We demonstrate Chromatix’s capacity to substantially accelerate optics simulation and optimization on existing methods in computational optics, speeding up optical simulation and optimization from 2-6× on a single GPU to up to 22× on 8 GPUs (depending on the particular system being modeled) compared to the original implementations. Chromatix establishes a standard for wave optics simulations, democratizing access to and expanding the design space of computational optics.i

View Publication Page
05/02/25 | Multiplex Detection of Gene Expression in the Intact Drosophila Brain Using Expansion-Assisted Iterative Fluorescence In Situ Hybridization.
Close K, He Y, Jeter J, Ihrke G, Eddison M
J Vis Exp. 2025 May 02(219):. doi: 10.3791/67656

Understanding gene expression is essential for deciphering cellular functions. However, methods for analyzing the expression of numerous genes in situ within a given tissue remain limited. The EASI-FISH protocol described here has been adapted to detect the expression of dozens of genes in the intact adult Drosophila central nervous system (CNS) using commercially available reagents. This protocol includes a new gel formulation that enhances gel robustness, enabling multiple rounds of hybridization and allowing the embedding of multiple brains per gel. This improvement increases throughput, facilitates optimal comparison of experimental conditions, and reduces reagent costs. Additionally, by employing the GAL4-UAS system for co-detection of green fluorescent protein (GFP), gene expression can be visualized in specific neuronal or glial cell types. Notably, the high resolution achieved through expansion microscopy, combined with the sensitivity of the method, allows for the detection of single RNA transcripts. This approach effectively integrates high image quality with high throughput, making it a powerful tool for studying gene expression throughout the intact fly brain.

View Publication Page