Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

1315 Janelia Publications

Showing 21-30 of 1315 results
02/18/18 | Transport and sorting in the Golgi complex: multiple mechanisms sort diverse cargo.
Boncampain G, Weigel AV
Current Opinion in Cell Biology. 2018 Feb ;50:. doi: 10.1016/

At the center of the secretory pathway, the Golgi complex ensures correct processing and sorting of cargos toward their final destination. Cargos are diverse in topology, function and destination. A remarkable feature of the Golgi complex is its ability to sort and process these diverse cargos destined for secretion, the cell surface, the lysosome, or retained within the secretory pathway. Just as these cargos are diverse so also are their sorting requirements and thus, their trafficking route. There is no one-size-fits-all sorting scheme in the Golgi. We propose a coexistence of models to reconcile these diverse needs. We review examples of differential sorting mediated by proteins and lipids. Additionally, we highlight recent technological developments that have potential to uncover new modes of transport.

View Publication Page
01/29/18 | Visualizing transcription factor dynamics in living cells.
Liu Z, Tjian R
The Journal of Cell Biology. 2018 Jan 29:. doi: 10.1083/jcb.201710038

The assembly of sequence-specific enhancer-binding transcription factors (TFs) at cis-regulatory elements in the genome has long been regarded as the fundamental mechanism driving cell type-specific gene expression. However, despite extensive biochemical, genetic, and genomic studies in the past three decades, our understanding of molecular mechanisms underlying enhancer-mediated gene regulation remains incomplete. Recent advances in imaging technologies now enable direct visualization of TF-driven regulatory events and transcriptional activities at the single-cell, single-molecule level. The ability to observe the remarkably dynamic behavior of individual TFs in live cells at high spatiotemporal resolution has begun to provide novel mechanistic insights and promises new advances in deciphering causal-functional relationships of TF targeting, genome organization, and gene activation. In this review, we review current transcription imaging techniques and summarize converging results from various lines of research that may instigate a revision of models to describe key features of eukaryotic gene regulation.

View Publication Page
01/23/18 | A preferred curvature-based continuum mechanics framework for modeling embryogenesis.
Khairy K, Lemon WC, Amat F, Keller PJ
Biophysical Journal. 2018 Jan 23;114(2):267-77. doi: 10.1016/j.bpj.2017.11.015

Mechanics plays a key role in the development of higher organisms. However, understanding this relationship is complicated by the difficulty of modeling the link between local forces generated at the subcellular level and deformations observed at the tissue and whole-embryo levels. Here we propose an approach first developed for lipid bilayers and cell membranes, in which force-generation by cytoskeletal elements enters a continuum mechanics formulation for the full system in the form of local changes in preferred curvature. This allows us to express and solve the system using only tissue strains. Locations of preferred curvature are simply related to products of gene expression. A solution, in that context, means relaxing the system’s mechanical energy to yield global morphogenetic predictions that accommodate a tendency toward the local preferred curvature, without a need to explicitly model force-generation mechanisms at the molecular level. Our computational framework, which we call SPHARM-MECH, extends a 3D spherical harmonics parameterization known as SPHARM to combine this level of abstraction with a sparse shape representation. The integration of these two principles allows computer simulations to be performed in three dimensions on highly complex shapes, gene expression patterns, and mechanical constraints. We demonstrate our approach by modeling mesoderm invagination in the fruit-fly embryo, where local forces generated by the acto-myosin meshwork in the region of the future mesoderm lead to formation of a ventral tissue fold. The process is accompanied by substantial changes in cell shape and long-range cell movements. Applying SPHARM-MECH to whole-embryo live imaging data acquired with light-sheet microscopy reveals significant correlation between calculated and observed tissue movements. Our analysis predicts the observed cell shape anisotropy on the ventral side of the embryo and suggests an active mechanical role of mesoderm invagination in supporting the onset of germ-band extension.

View Publication Page
01/23/18 | The Chlamydia type III effector TarP alters the dynamics and organization of host focal adhesions.
Pedrosa AT, Nogueira AT, Thwaites TR, Aaron J, Chew T, Carabeo RA
bioRxiv. 2018 Jan 23:. doi: 10.1101/250563

Bacterial infection of mucosal epithelial cells triggers cell exfoliation to limit the dissemination of infection within the tissue. Therefore, mucosal pathogens must possess strategies to counteract cell extrusion in response to infection. Chlamydia trachomatis spends most of its intracellular development in the non-infectious form. Thus, premature host cell extrusion is detrimental to the pathogen. We demonstrate that C. trachomatis alters the dynamics of focal adhesions. Live-cell microscopy showed that focal adhesions in C. trachomatis-infected cells displayed increased stability. In contrast, focal adhesions in mock-infected cells readily disassembled upon inhibition of myosin II by blebbisttin. Super-resolution microscopy revealed a reorganization of paxillin and FAK in infected cells. Ectopically expressed type III effector TarP localized to focal adhesions, leading to their stabilization and reorganization in a vinculin-dependent manner. Overall, the results indicate that C. trachomatis possesses a dedicated mechanism to regulate host cell focal adhesion dynamics.

View Publication Page
01/16/18 | A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578.
Shen Y, Dana H, Abdelfattah AS, Patel R, Shea J, Molina RS, Rawal B, Rancic V, Chang Y, Wu L, Chen Y, Qian Y, Wiens MD, Hambleton N, Ballanyi K, Hughes TE, Drobizhev M, Kim DS, Koyama M, Schreiter ER, Campbell RE
BMC Biology. 2018 Jan 16;16(1):9. doi: 10.1186/s12915-018-0480-0

BACKGROUND: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are indispensable tools for measuring Ca2+ dynamics and neuronal activities in vitro and in vivo. Red fluorescent protein (RFP)-based GECIs have inherent advantages relative to green fluorescent protein-based GECIs due to the longer wavelength light used for excitation. Longer wavelength light is associated with decreased phototoxicity and deeper penetration through tissue. Red GECI can also enable multicolor visualization with blue- or cyan-excitable fluorophores.

RESULTS: Here we report the development, structure, and validation of a new RFP-based GECI, K-GECO1, based on a circularly permutated RFP derived from the sea anemone Entacmaea quadricolor. We have characterized the performance of K-GECO1 in cultured HeLa cells, dissociated neurons, stem-cell-derived cardiomyocytes, organotypic brain slices, zebrafish spinal cord in vivo, and mouse brain in vivo.

CONCLUSION: K-GECO1 is the archetype of a new lineage of GECIs based on the RFP eqFP578 scaffold. It offers high sensitivity and fast kinetics, similar or better than those of current state-of-the-art indicators, with diminished lysosomal accumulation and minimal blue-light photoactivation. Further refinements of the K-GECO1 lineage could lead to further improved variants with overall performance that exceeds that of the most highly optimized red GECIs.

View Publication Page
01/16/18 | Mutual inhibition of lateral inhibition: a network motif for an elementary computation in the brain.
Koyama M, Pujala A
Current Opinion in Neurobiology. 2018 Jan 16;49:69-74. doi: 10.1016/j.conb.2017.12.019

A series of classical studies in non-human primates has revealed the neuronal activity patterns underlying decision-making. However, the circuit mechanisms for such patterns remain largely unknown. Recent detailed circuit analyses in simpler neural systems have started to reveal the connectivity patterns underlying analogous processes. Here we review a few of these systems that share a particular connectivity pattern, namely mutual inhibition of lateral inhibition. Close examination of these systems suggests that this recurring connectivity pattern ('network motif') is a building block to enforce particular dynamics, which can be used not only for simple behavioral choice but also for more complex choices and other brain functions. Thus, a network motif provides an elementary computation that is not specific to a particular brain function and serves as an elementary building block in the brain.

View Publication Page
01/16/18 | Repetitive aggressive encounters generate a long-lasting internal state in Drosophila melanogaster males.
Kim Y, Saver M, Simon J, Kent CF, Shao L, Eddison M, Agrawal P, Texada M, Truman JW, Heberlein U
Proceedings of the National Academy of Sciences of the United States of America. 2018 Jan 16;115(5):1099-104. doi: 10.1073/pnas.1716612115

Multiple studies have investigated the mechanisms of aggressive behavior in Drosophila; however, little is known about the effects of chronic fighting experience. Here, we investigated if repeated fighting encounters would induce an internal state that could affect the expression of subsequent behavior. We trained wild-type males to become winners or losers by repeatedly pairing them with hypoaggressive or hyperaggressive opponents, respectively. As described previously, we observed that chronic losers tend to lose subsequent fights, while chronic winners tend to win them. Olfactory conditioning experiments showed that winning is perceived as rewarding, while losing is perceived as aversive. Moreover, the effect of chronic fighting experience generalized to other behaviors, such as gap-crossing and courtship. We propose that in response to repeatedly winning or losing aggressive encounters, male flies form an internal state that displays persistence and generalization; fight outcomes can also have positive or negative valence. Furthermore, we show that the activities of the PPL1-γ1pedc dopaminergic neuron and the MBON-γ1pedc>α/β mushroom body output neuron are required for aversion to an olfactory cue associated with losing fights.

View Publication Page
01/15/18 | Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp.
Gallagher-Jones M, Glynn C, Boyer DR, Martynowycz MW, Hernandez E, Miao J, Zee C, Novikova IV, Goldschmidt L, McFarlane HT, Helguera GF, Evans JE, Sawaya MR, Cascio D, Eisenberg DS, Gonen T, Rodriguez JA
Nature Structural & Molecular Biology. 2018 Jan 15:. doi: 10.1038/s41594-017-0018-0

The atomic structure of the infectious, protease-resistant, β-sheet-rich and fibrillar mammalian prion remains unknown. Through the cryo-EM method MicroED, we reveal the sub-ångström-resolution structure of a protofibril formed by a wild-type segment from the β2-α2 loop of the bank vole prion protein. The structure of this protofibril reveals a stabilizing network of hydrogen bonds that link polar zippers within a sheet, producing motifs we have named 'polar clasps'.

View Publication Page
01/14/18 | Aberrant calcium signaling in astrocytes inhibits neuronal excitability in a human Down syndrome stem cell model.
Tian L, Or G, Wang Y, Shi G, Wang Y, Sun J, Papadopoulos S, Broussard G, Unger E, Deng W, Weick J, Bhattacharyya A, Chen C, Yu G, Looger LL
bioRxiv. 2018 Jan 14:. doi: 10.1101/247585

Down syndrome (DS) is a devastating genetic disorder causing severe cognitive impairment. The staggering array of effects associated with an extra copy of human chromosome 21 (HSA21) complicates mechanistic understanding of DS pathophysiology. We developed an in vitro system to examine the interplay of neurons and astrocytes in a fully recapitulated HSA21 trisomy model differentiated from DS patient-derived induced pluripotent stem cells (iPSCs). By combining calcium imaging with genetic approaches, we utilized this system to investigate the functional defects of DS astroglia and their effects on neuronal excitability. We found that, compared with control isogenic astroglia, DS astroglia exhibited more frequent spontaneous calcium fluctuations, which reduced the excitability of co-cultured neurons. DS astrocytes exerted this effect on both DS and healthy neurons. Neuronal activity could be rescued by abolishing astrocytic spontaneous calcium activity either chemically by blocking adenosine-mediated astrocyte-neuron signaling or genetically by knockdown of inositol triphosphate (IP3) receptors or S100β, a calcium binding protein coded on HSA21. Our results suggest a novel mechanism by which DS alters the function of astrocytes, which subsequently disturbs neuronal excitability. Furthermore, our study establishes an all optical neurophysiological platform for studying human neuron astrocyte interactions associated with neurological disorders.

View Publication Page
01/11/18 | Persistent activity in a recurrent circuit underlies courtship memory in Drosophila.
Zhao X, Lenek D, Dag U, Dickson B, Keleman K
eLife. 2018 Jan 11;7:. doi: 10.7554/eLife.31425

Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBg), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MBγ>M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory.

View Publication Page