Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2268 Janelia Publications

Showing 71-80 of 2268 results
Reiser LabFlyLightFly Functional ConnectomeFly Facility
12/15/22 | Eye structure shapes neuron function in Drosophila motion vision
Arthur Zhao , Eyal Gruntman , Aljoscha Nern , Nirmala A. Iyer , Edward M. Rogers , Sanna Koskela , Igor Siwanowicz , Marisa Dreher , Miriam A. Flynn , Connor W. Laughland , Henrique D.F. Ludwig , Alex G. Thomson , Cullen P. Moran , Bruck Gezahegn , Davi D. Bock , Michael B. Reiser
bioRxiv. 2022 Dec 15:. doi: 10.1101/2022.12.14.520178

Many animals rely on vision to navigate through their environment. The pattern of changes in the visual scene induced by self-motion is the optic flow1, which is first estimated in local patches by directionally selective (DS) neurons24. But how should the arrays of DS neurons, each responsive to motion in a preferred direction at a specific retinal position, be organized to support robust decoding of optic flow by downstream circuits? Understanding this global organization is challenging because it requires mapping fine, local features of neurons across the animal’s field of view3. In Drosophila, the asymmetric dendrites of the T4 and T5 DS neurons establish their preferred direction, making it possible to predict DS responses from anatomy4,5. Here we report that the preferred directions of fly DS neurons vary at different retinal positions and show that this spatial variation is established by the anatomy of the compound eye. To estimate the preferred directions across the visual field, we reconstructed hundreds of T4 neurons in a full brain EM volume6 and discovered unexpectedly stereotypical dendritic arborizations that are independent of location. We then used whole-head μCT scans to map the viewing directions of all compound eye facets and found a non-uniform sampling of visual space that explains the spatial variation in preferred directions. Our findings show that the organization of preferred directions in the fly is largely determined by the compound eye, exposing an intimate and unexpected connection between the peripheral structure of the eye, functional properties of neurons deep in the brain, and the control of body movements.

View Publication Page
12/15/22 | Neural circuit mechanisms for transforming learned olfactory valences into wind-oriented movement
Yoshinori Aso , Daichi Yamada , Daniel Bushey , Karen Hibbard , Megan Sammons , Hideo Otsuna , Yichun Shuai , Toshihide Hige
bioRxiv. 2022 Dec 15:. doi: 10.1101/2022.12.21.521497

How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After training, disinhibition from the appetitive-memory MBONs enhances the response of UpWiNs to reward-predicting odors. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was initiated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.

View Publication Page
12/15/22 | Neural coding of distinct motor patterns during Drosophila courtship song
Hiroshi M. Shiozaki , Kaiyu Wang , Joshua L. Lillvis , Min Xu , Barry J. Dickson , David L. Stern
bioRxiv. 2022 Dec 15:. doi: 10.1101/2022.12.14.520499

Animals flexibly switch between different actions by changing neural activity patterns for motor control. Courting Drosophila melanogaster males produce two different acoustic signals, pulse and sine song, each of which can be promoted by artificial activation of distinct neurons. However, how the activity of these neurons implements flexible song production is unknown. Here, we developed an assay to record neuronal calcium signals in the ventral nerve cord, which contains the song motor circuit, in singing flies. We found that sine-promoting neurons, but not pulse-promoting neurons, show strong activation during sine song. In contrast, both pulse- and sine-promoting neurons are active during pulse song. Furthermore, population calcium imaging in the song circuit suggests that sine song involves activation of a subset of neurons that are also active during pulse song. Thus, differential activation of overlapping, rather than distinct, neural populations underlies flexible motor actions during acoustic communication in D. melanogaster.

View Publication Page
12/14/22 | Neuromuscular embodiment of feedback control elements in flight.
Whitehead SC, Leone S, Lindsay T, Meiselman MR, Cowan NJ, Dickinson MH, Yapici N, Stern DL, Shirangi T, Cohen I
Science Advances. 2022 Dec 14;8(50):eabo7461. doi: 10.1126/sciadv.abo7461

While insects such as are flying, aerodynamic instabilities require that they make millisecond time scale adjustments to their wing motion to stay aloft and on course. These stabilization reflexes can be modeled as a proportional-integral (PI) controller; however, it is unclear how such control might be instantiated in insects at the level of muscles and neurons. Here, we show that the b1 and b2 motor units-prominent components of the fly's steering muscle system-modulate specific elements of the PI controller: the angular displacement (integral) and angular velocity (proportional), respectively. Moreover, these effects are observed only during the stabilization of pitch. Our results provide evidence for an organizational principle in which each muscle contributes to a specific functional role in flight control, a finding that highlights the power of using top-down behavioral modeling to guide bottom-up cellular manipulation studies.

View Publication Page
12/13/22 | Long-term imaging reveals behavioral plasticity during C. elegans dauer exit
Friedrich Preusser , Anika Neuschulz , Jan Philipp Junker , Nikolaus Rajewsky , Stephan Preibisch
BMC Biology. 2022 Dec 13;20(1):277. doi: 10.1186/s12915-022-01471-4

During their lifetime, animals must adapt their behavior to survive in changing environments. This ability requires the nervous system to adjust through dynamic expression of neurotransmitters and receptors but also through growth, spatial reorganization and connectivity while integrating external stimuli. For instance, despite having a fixed neuronal cell lineage, the nematode Caenorhabditis elegans’ nervous system remains plastic throughout its development. Here, we focus on a specific example of nervous system plasticity, the C. elegans dauer exit decision. Under unfavorable conditions, larvae will enter the non-feeding and non-reproductive dauer stage and adapt their behavior to cope with a new environment. Upon improved conditions, this stress resistant developmental stage is actively reversed to resume reproductive development. However, how different environmental stimuli regulate the exit decision mechanism and thereby drive the larva’s behavioral change is unknown. To fill this gap, we developed a new open hardware method for long-term imaging (12h) of C. elegans larvae. We identified dauer-specific behavioral motifs and characterized the behavioral trajectory of dauer exit in different environments to identify key decision points. Combining long-term behavioral imaging with transcriptomics, we find that bacterial ingestion triggers a change in neuropeptide gene expression to establish post-dauer behavior. Taken together, we show how a developing nervous system can robustly integrate environmental changes, activate a developmental switch and adapt the organism’s behavior to a new environment.

View Publication Page
12/09/22 | Exact learning dynamics of deep linear networks with prior knowledge
Lukas Braun , Clémentine Dominé , James Fitzgerald , Andrew Saxe
Neural Information Processing Systems:

Learning in deep neural networks is known to depend critically on the knowledge embedded in the initial network weights. However, few theoretical results have precisely linked prior knowledge to learning dynamics. Here we derive exact solutions to the dynamics of learning with rich prior knowledge in deep linear networks by generalising Fukumizu's matrix Riccati solution \citep{fukumizu1998effect}. We obtain explicit expressions for the evolving network function, hidden representational similarity, and neural tangent kernel over training for a broad class of initialisations and tasks. The expressions reveal a class of task-independent initialisations that radically alter learning dynamics from slow non-linear dynamics to fast exponential trajectories while converging to a global optimum with identical representational similarity, dissociating learning trajectories from the structure of initial internal representations. We characterise how network weights dynamically align with task structure, rigorously justifying why previous solutions successfully described learning from small initial weights without incorporating their fine-scale structure. Finally, we discuss the implications of these findings for continual learning, reversal learning and learning of structured knowledge. Taken together, our results provide a mathematical toolkit for understanding the impact of prior knowledge on deep learning.

View Publication Page
12/04/22 | Organelle proteomic profiling reveals lysosomal heterogeneity in association with longevity
Yong Yu , Shihong M. Gao , Youchen Guan , Pei-Wen Hu , Qinghao Zhang , Jiaming Liu , Bentian Jing , Qian Zhao , David M Sabatini , Monther Abu-Remaileh , Sung Yun Jung , Meng C. Wang
bioRxiv. 2022 Dec 04:. doi: 10.1101/2022.10.16.512400

Lysosomes are active sites to integrate cellular metabolism and signal transduction. A collection of proteins enriched at lysosomes mediate these metabolic and signaling functions. Both lysosomal metabolism and lysosomal signaling have been linked with longevity regulation; however, how lysosomes adjust their protein composition to accommodate this regulation remains unclear. Using large-scale proteomic profiling, we systemically profiled lysosome- enriched proteomes in association with different longevity mechanisms. We further discovered the lysosomal recruitment of AMPK and nucleoporin proteins and their requirements for longevity in response to increased lysosomal lipolysis. Through comparative proteomic analyses of lysosomes from different tissues and labeled with different markers, we discovered lysosomal heterogeneity across tissues as well as the specific enrichment of the Ragulator complex on Cystinosin positive lysosomes. Together, this work uncovers lysosomal proteome heterogeneity at different levels and provides resources for understanding the contribution of lysosomal proteome dynamics in modulating signal transduction, organelle crosstalk and organism longevity.

View Publication Page
12/02/22 | Hippocampal representations of foraging trajectories depend upon spatial context.
Jiang W, Xu S, Dudman JT
Nature Neuroscience. 2022 Dec 02;25(12):1693-1705. doi: 10.1038/s41593-022-01201-7

Animals learn trajectories to rewards in both spatial, navigational contexts and relational, non-navigational contexts. Synchronous reactivation of hippocampal activity is thought to be critical for recall and evaluation of trajectories for learning. Do hippocampal representations differentially contribute to experience-dependent learning of trajectories across spatial and relational contexts? In this study, we trained mice to navigate to a hidden target in a physical arena or manipulate a joystick to a virtual target to collect delayed rewards. In a navigational context, calcium imaging in freely moving mice revealed that synchronous CA1 reactivation was retrospective and important for evaluation of prior navigational trajectories. In a non-navigational context, reactivation was prospective and important for initiation of joystick trajectories, even in the same animals trained in both contexts. Adaptation of trajectories to a new target was well-explained by a common learning algorithm in which hippocampal activity makes dissociable contributions to reinforcement learning computations depending upon spatial context.

View Publication Page
Singer Lab
12/01/22 | Inhibition of coronavirus HCoV-OC43 by targeting the eIF4F complex.
Feng Y, Grotegut S, Jovanovic P, Gandin V, Olson SH, Murad R, Beall A, Colayco S, De-Jesus P, Chanda S, English BP, Singer RH, Jackson M, Topisirovic I, Ronai ZA
Frontiers in Pharmacology. 2022 Dec 01;13:1029093. doi: 10.3389/fphar.2022.1029093

The translation initiation complex 4F (eIF4F) is a rate-limiting factor in protein synthesis. Alterations in eIF4F activity are linked to several diseases, including cancer and infectious diseases. To this end, coronaviruses require eIF4F complex activity to produce proteins essential for their life cycle. Efforts to target coronaviruses by abrogating translation have been largely limited to repurposing existing eIF4F complex inhibitors. Here, we report the results of a high throughput screen to identify small molecules that disrupt eIF4F complex formation and inhibit coronavirus RNA and protein levels. Of 338,000 small molecules screened for inhibition of the eIF4F-driven, CAP-dependent translation, we identified SBI-1232 and two structurally related analogs, SBI-5844 and SBI-0498, that inhibit human coronavirus OC43 (HCoV-OC43; OC43) with minimal cell toxicity. Notably, gene expression changes after OC43 infection of Vero E6 or A549 cells were effectively reverted upon treatment with SBI-5844 or SBI-0498. Moreover, SBI-5844 or SBI-0498 treatment effectively impeded the eIF4F complex assembly, with concomitant inhibition of newly synthesized OC43 nucleocapsid protein and OC43 RNA and protein levels. Overall, we identify SBI-5844 and SBI-0498 as small molecules targeting the eIF4F complex that may limit coronavirus transcripts and proteins, thereby representing a basis for developing novel therapeutic modalities against coronaviruses.

View Publication Page
12/01/22 | Practical considerations for quantitative light sheet fluorescence microscopy.
Hobson CM, Guo M, Vishwasrao HD, Wu Y, Shroff H, Chew T
Nature Methods. 2022 Dec 01;19(12):1538-49. doi: 10.1038/s41592-022-01632-x

Fluorescence microscopy has evolved from a purely observational tool to a platform for quantitative, hypothesis-driven research. As such, the demand for faster and less phototoxic imaging modalities has spurred a rapid growth in light sheet fluorescence microscopy (LSFM). By restricting the excitation to a thin plane, LSFM reduces the overall light dose to a specimen while simultaneously improving image contrast. However, the defining characteristics of light sheet microscopes subsequently warrant unique considerations in their use for quantitative experiments. In this Perspective, we outline many of the pitfalls in LSFM that can compromise analysis and confound interpretation. Moreover, we offer guidance in addressing these caveats when possible. In doing so, we hope to provide a useful resource for life scientists seeking to adopt LSFM to quantitatively address complex biological hypotheses.

View Publication Page