Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

1999 Janelia Publications

Showing 81-90 of 1999 results
05/13/21 | CryoEM structure of the antibacterial target PBP1b at 3.3 Å resolution.
Caveney NA, Workman SD, Yan R, Atkinson CE, Yu Z, Strynadka NC
Nature Communications. 2021 May 13;12(1):2775. doi: 10.1038/s41467-021-23063-6

The pathway for the biosynthesis of the bacterial cell wall is one of the most prolific antibiotic targets, exemplified by the widespread use of β-lactam antibiotics. Despite this, our structural understanding of class A penicillin binding proteins, which perform the last two steps in this pathway, is incomplete due to the inherent difficulty in their crystallization and the complexity of their substrates. Here, we determine the near atomic resolution structure of the 83 kDa class A PBP from Escherichia coli, PBP1b, using cryogenic electron microscopy and a styrene maleic acid anhydride membrane mimetic. PBP1b, in its apo form, is seen to exhibit a distinct conformation in comparison to Moenomycin-bound crystal structures. The work herein paves the way for the use of cryoEM in structure-guided antibiotic development for this notoriously difficult to crystalize class of proteins and their complex substrates.

View Publication Page
05/13/21 | High-precision coding in visual cortex.
Stringer C, Michaelos M, Tsyboulski D, Lindo SE, Pachitariu M
Cell. 2021 May 13;184(10):2767-78. doi: 10.1016/j.cell.2021.03.042

Individual neurons in visual cortex provide the brain with unreliable estimates of visual features. It is not known whether the single-neuron variability is correlated across large neural populations, thus impairing the global encoding of stimuli. We recorded simultaneously from up to 50,000 neurons in mouse primary visual cortex (V1) and in higher order visual areas and measured stimulus discrimination thresholds of 0.35° and 0.37°, respectively, in an orientation decoding task. These neural thresholds were almost 100 times smaller than the behavioral discrimination thresholds reported in mice. This discrepancy could not be explained by stimulus properties or arousal states. Furthermore, behavioral variability during a sensory discrimination task could not be explained by neural variability in V1. Instead, behavior-related neural activity arose dynamically across a network of non-sensory brain areas. These results imply that perceptual discrimination in mice is limited by downstream decoders, not by neural noise in sensory representations.

View Publication Page
05/13/21 | Lupus susceptibility region containing CDKN1B rs34330 mechanistically influences expression and function of multiple target genes, also linked to proliferation and apoptosis.
Singh B, Maiti GP, Zhou X, Fazel-Najafabadi M, Bae S, Sun C, Terao C, Okada Y, Chua KH, Kochi Y, Guthridge JM, Zhang H, Weirauch M, James JA, Harley JB, Varshney GK, Looger LL, Nath SK
Arthritis Rheumatology. 2021 May 13:. doi: 10.1002/art.41799

OBJECTIVE: A recent genome-wide association study (GWAS) reported a significant genetic association between rs34330 of cyclin-dependent kinase inhibitor 1B (CDKN1B) and risk of systemic lupus erythematosus (SLE) in Han Chinese. This study aims to validate the reported association and elucidate the biochemical mechanisms underlying the variant's effect.

METHODS: We performed allelic association with SLE followed by meta-analysis across 11 independent cohorts (n=28,872). We applied in silico bioinformatics and experimental validation in SLE-relevant cell lines to determine the functional consequences of rs34330.

RESULTS: We replicated genetic association between SLE and rs34330 (P =5.29x10 , OR (95% CI)=0.84 (0.81-0.87)). Follow-up bioinformatics and eQTL analysis suggest that rs34330 is located in active chromatin and potentially regulates several target genes. Using luciferase and ChIP-qPCR, we demonstrated substantial allele-specific promoter and enhancer activity, and allele-specific binding of three histone marks (H3K27ac, H3K4me3, H3K4me1), RNA pol II, CTCF, and a critical immune transcription factor (IRF-1). Chromosome conformation capture (3C) detected long-range chromatin interactions between rs34330 and the promoters of neighboring genes APOLD1 and DDX47, and effects on CDKN1B and the other target genes were directly validated by CRISPR-based genome editing. Finally, CRISPR-dCas9-based epigenetic activation/silencing confirmed these results. Gene-edited cell lines also showed higher levels of proliferation and apoptosis.

CONCLUSION: Collectively, these findings suggest a mechanism whereby the rs34330 risk allele (C) influences the presence of histone marks, RNA pol II, and the IRF-1 transcription factor to regulate expression of several target genes linked to proliferation and apoptosis, which potentially underlie the association of rs34330 with SLE.

View Publication Page
05/11/21 | A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS.
Mark B, Lai S, Zarin AA, Manning L, Pollington HQ, Litwin-Kumar A, Cardona A, Truman JW, Doe CQ
eLife. 2021 May 11;10:. doi: 10.7554/eLife.67510

The mechanisms specifying neuronal diversity are well-characterized, yet it remains unclear how or if these mechanisms regulate neural circuit assembly. To address this, we mapped the developmental origin of 160 interneurons from seven bilateral neural progenitors (neuroblasts), and identify them in a synapse-scale TEM reconstruction of the larval CNS. We find that lineages concurrently build the sensory and motor neuropils by generating sensory and motor hemilineages in a Notch-dependent manner. Neurons in a hemilineage share common synaptic targeting within the neuropil, which is further refined based on neuronal temporal identity. Connectome analysis shows that hemilineage-temporal cohorts share common connectivity. Finally, we show that proximity alone cannot explain the observed connectivity structure, suggesting hemilineage/temporal identity confers an added layer of specificity. Thus, we demonstrate that the mechanisms specifying neuronal diversity also govern circuit formation and function, and that these principles are broadly applicable throughout the nervous system.

View Publication Page
05/10/21 | A novel family of secreted insect proteins linked to plant gall development.
Korgaonkar A, Han C, Lemire AL, Siwanowicz I, Bennouna D, Kopec RE, Andolfatto P, Shigenobu S, Stern DL
Current Biology. 2021 May 10;31(9):1836. doi: 10.1016/j.cub.2021.01.104

In an elaborate form of inter-species exploitation, many insects hijack plant development to induce novel plant organs called galls that provide the insect with a source of nutrition and a temporary home. Galls result from dramatic reprogramming of plant cell biology driven by insect molecules, but the roles of specific insect molecules in gall development have not yet been determined. Here, we study the aphid Hormaphis cornu, which makes distinctive "cone" galls on leaves of witch hazel Hamamelis virginiana. We found that derived genetic variants in the aphid gene determinant of gall color (dgc) are associated with strong downregulation of dgc transcription in aphid salivary glands, upregulation in galls of seven genes involved in anthocyanin synthesis, and deposition of two red anthocyanins in galls. We hypothesize that aphids inject DGC protein into galls and that this results in differential expression of a small number of plant genes. dgc is a member of a large, diverse family of novel predicted secreted proteins characterized by a pair of widely spaced cysteine-tyrosine-cysteine (CYC) residues, which we named BICYCLE proteins. bicycle genes are most strongly expressed in the salivary glands specifically of galling aphid generations, suggesting that they may regulate many aspects of gall development. bicycle genes have experienced unusually frequent diversifying selection, consistent with their potential role controlling gall development in a molecular arms race between aphids and their host plants.

View Publication Page
05/08/21 | Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome
Govind AP, Jeyifous O, Russell TA, Yi Z, Weigel AV, Ramaprasad A, Newell L, Ramos W, Valbuena FM, Casler JC, Yan J, Glick BS, Swanson GT, Lippincott-Schwartz J, Green WN
bioRxiv. 05/2021:. doi: 10.1101/2021.04.06.438745

Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that N-glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal excitation. In exploring the basis of these N-glycosylation alterations, we discovered they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed with neuronal excitation were in close association with ER exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway, or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite’s satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction and disease.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
05/01/21 | Flexible scaling and persistence of social vocal communication.
Chen J, Markowitz JE, Lilascharoen V, Taylor S, Sheurpukdi P, Keller JA, Jensen JR, Lim BK, Datta SR, Stowers L
Nature. 2021 May 01;593(7857):108-13. doi: 10.1038/s41586-021-03403-8

Innate vocal sounds such as laughing, screaming or crying convey one's feelings to others. In many species, including humans, scaling the amplitude and duration of vocalizations is essential for effective social communication. In mice, female scent triggers male mice to emit innate courtship ultrasonic vocalizations (USVs). However, whether mice flexibly scale their vocalizations and how neural circuits are structured to generate flexibility remain largely unknown. Here we identify mouse neurons from the lateral preoptic area (LPOA) that express oestrogen receptor 1 (LPOA neurons) and, when activated, elicit the complete repertoire of USV syllables emitted during natural courtship. Neural anatomy and functional data reveal a two-step, di-synaptic circuit motif in which primary long-range inhibitory LPOA neurons relieve a clamp of local periaqueductal grey (PAG) inhibition, enabling excitatory PAG USV-gating neurons to trigger vocalizations. We find that social context shapes a wide range of USV amplitudes and bout durations. This variability is absent when PAG neurons are stimulated directly; PAG-evoked vocalizations are time-locked to neural activity and stereotypically loud. By contrast, increasing the activity of LPOA neurons scales the amplitude of vocalizations, and delaying the recovery of the inhibition clamp prolongs USV bouts. Thus, the LPOA disinhibition motif contributes to flexible loudness and the duration and persistence of bouts, which are key aspects of effective vocal social communication.

View Publication Page
05/01/21 | RNA transport and local translation in neurodevelopmental and neurodegenerative disease.
Fernandopulle MS, Lippincott-Schwartz J, Ward ME
Nature Neuroscience. 2021 May 01;24(5):622-32. doi: 10.1038/s41593-020-00785-2

Neurons decentralize protein synthesis from the cell body to support the active metabolism of remote dendritic and axonal compartments. The neuronal RNA transport apparatus, composed of cis-acting RNA regulatory elements, neuronal transport granule proteins, and motor adaptor complexes, drives the long-distance RNA trafficking required for local protein synthesis. Over the past decade, advances in human genetics, subcellular biochemistry, and high-resolution imaging have implicated each member of the apparatus in several neurodegenerative diseases, establishing failed RNA transport and associated processes as a unifying pathomechanism. In this review, we deconstruct the RNA transport apparatus, exploring each constituent's role in RNA localization and illuminating their unique contributions to neurodegeneration.

View Publication Page
04/29/21 | ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER.
Weigel AV, Chang C, Shtengel G, Xu CS, Hoffman DP, Freeman M, Iyer N, Aaron J, Khuon S, Bogovic J, Qiu W, Hess HF, Lippincott-Schwartz J
Cell. 2021 Apr 29;184(9):2412. doi: 10.1016/j.cell.2021.03.035

Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.

View Publication Page
04/28/21 | Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model.
Mathias Hammer , Maximiliaan Huisman , Alex Rigano , Ulrike Boehm , James J. Chambers , Nathalie Gaudreault , Alison J. North , Jaime A. Pimentel , Damir Sudar , Peter Bajcsy , Claire M. Brown , Alexander D. Corbett , Orestis Faklaris , Judith Lacoste , Alex Laude , Glyn Nelson , Roland Nitschke , Farzin Farzam , Carlas S. Smith , David Grunwald , Caterina Strambio-De-Castillia
bioRxiv. 2021 Apr 28:. doi: 10.1101/2021.04.25.441198v1

Digital light microscopy provides powerful tools for quantitatively probing the real-time dynamics of subcellular structures. While the power of modern microscopy techniques is undeniable, rigorous record-keeping and quality control are required to ensure that imaging data may be properly interpreted (quality), reproduced (reproducibility), and used to extract reliable information and scientific knowledge which can be shared for further analysis (value). Keeping notes on microscopy experiments and quality control procedures ought to be straightforward, as the microscope is a machine whose components are defined and the performance measurable. Nevertheless, to this date, no universally adopted community-driven specifications exist that delineate the required information about the microscope hardware and acquisition settings (i.e., microscopy “data provenance” metadata) and the minimally accepted calibration metrics (i.e., microscopy quality control metadata) that should be automatically recorded by both commercial microscope manufacturers and customized microscope developers. In the absence of agreed guidelines, it is inherently difficult for scientists to create comprehensive records of imaging experiments and ensure the quality of resulting image data or for manufacturers to incorporate standardized reporting and performance metrics. To add to the confusion, microscopy experiments vary greatly in aim and complexity, ranging from purely descriptive work to complex, quantitative and even sub-resolution studies that require more detailed reporting and quality control measures.

View Publication Page