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Abstract—We consider the problem of estimating discrete self-
exciting point process models from limited binary observations,
where the history of the process serves as the covariate. We
analyze the performance of two classes of estimators, namely the
`1-regularized maximum likelihood and greedy estimators, for a
canonical self-exciting point process and characterize the sam-
pling tradeoffs required for stable recovery in the non-asymptotic
regime. Our results extend those of compressed sensing for linear
and generalized linear models with i.i.d. covariates to point
processes with highly inter-dependent covariates. We further
provide simulation studies as well as application to real spiking
data from mouse’s lateral geniculate nucleus and ferret’s retinal
ganglion cells which agree with our theoretical predictions.

Index Terms—compressed sensing, point process models, spar-
sity, spontaneous activity, neural signal processing.

I. INTRODUCTION

The theory of compressed sensing (CS) has provided a novel
framework for measuring and estimating statistical models
governed by sparse underlying parameters [1]–[6]. In partic-
ular, for linear models with random covariates and sparsity
of the parameters, the CS theory provides sharp trade-offs
between the number of measurement, sparsity, and estimation
accuracy. Typical theoretical guarantees imply that when the
number of random measurements are roughly proportional
to sparsity, then stable recovery of these sparse models is
possible.

Beyond those described by linear models, observations from
binary phenomena form a large class of data in natural and
social sciences. Their ubiquity in disciplines such as neuro-
science, physiology, seismology, criminology, and finance has
urged researchers to develop formal frameworks to model and
analyze these data. In particular, the theory of point processes
provides a statistical machinery for modeling and prediction
of such phenomena. Traditionally, these models have been
employed to predict the likelihood of self-exciting processes
such as earthquake occurrences [7], [8], but have recently
found applications in several other areas. For instance, these
models have been used to characterize heart-beat dynamics
[9], [10] and violence among gangs [11]. Self-exciting point
process models have also found significant applications in
analysis of neuronal data [12]–[18].

In particular, point process models provide a principled
way to regress binary spiking data with respect to extrinsic
stimuli and neural covariates, and thereby forming predictive
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statistical models for neural spiking activity. Examples include
place cells in the hippocampus, spectro-temporally tuned cells
in the primary auditory cortex, and spontaneous retinal or
thalamic neurons spiking under tuned intrinsic frequencies.
When fitted to neuronal data, these models exhibit three
main features: first, the underlying parameters are nearly
sparse or compressible; second, the covariates are often highly
structured and correlated; and third, the input-output relation
is highly nonlinear. Therefore, the theoretical guarantees of
compressed sensing do not readily translate to prescriptions
for point process estimation.

Self-exciting point processes have been utilized in neuro-
science in order to assess the functional connectivity of neu-
ronal ensembles. Estimation is typically carried out by regular-
ized Maximum Likelihood (ML) estimation, where empirical
methods, such as cross-validation, are employed to adjust regu-
larization [19]. In the signal processing and information theory
literature, sparse signal recovery under Poisson statistics has
been considered in [20] with application to the analysis of
ranking data. In [21], a similar setting has been studied, with
motivation from imaging by photon-counting devices. Finally,
in theoretical statistics, high-dimensional M -estimators with
decomposable regularizers, such as the `1-norm, have been
studied for Generalized Linear Models (GLM) [22].

A key underlying assumption in the existing theoretical
analysis of estimating point process models is the indepen-
dence and identical distribution (i.i.d.) of covariates. This
assumption does not hold for self-exciting point processes,
since the history of the process takes the role of the covariates.
Nevertheless, regularized ML estimators show remarkable per-
formance in fitting point process models to neuronal data with
history dependence and highly non-i.i.d. covariates. In this
paper, we close this gap by presenting new results on robust
estimation of compressible point process models, relaxing the
assumptions of i.i.d. covariates and exact sparsity common in
CS.

In particular, we will consider a canonical discrete point
process model and will analyze two classes of estimators
for its underlying parameters: the `1-regularized maximum
likelihood and greedy estimators. We will present theoretical
guarantees that extend those of CS theory and characterize
fundamental trade-offs between the number of measurements,
model compressibility, and estimation error of point processes
in the non-asymptotic regime. Our results reveal that when the
number of measurements scale sub-linearly with the product of
the ambient dimension and a generalized measure of sparsity
(modulo logarithmic factors), then stable recovery of the
underlying models is possible, even though the covariates
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solely depend on the history of the process. We will further
discuss the extensions of these results to more general classes
of point process models. Finally, we will present applications
to simulated as well as real data from neuronal activity in
mouse’s lateral geniculate nucleus and ferret’s retinal ganglion
cells, which agree with our theoretical predictions. Aside
from their theoretical significance, our results are particularly
important in light of the technological advances in neural
prostheses, which require robust neuronal system identification
based on compressed data acquisition.

The rest of the paper is organized as follows: In Section
II, we present our notational conventions, preliminaries and
problem formulation. In Section III, we discuss the estimation
procedures and state the main theoretical results of this paper.
Section IV provides numerical simulations as well as applica-
tion to real data. In Section V, we discuss the implications of
our results and outline future research directions. Finally, we
present the proofs of the main theoretical results, discuss their
extensions, and give a brief background on relevant statistical
tests in Appendices A, B, and C, respectively.

II. PREMILIMINARIES AND PROBLEM FORMULATION

A. Self-Exciting Point Process Models

We first give a brief introduction to self-exciting point
process models (see [23] for a detailed treatment). We will
use the following notation throughout the paper. Parameter
vectors are denote by bold-face Greek letters. For example,
θ = [θ1, θ2, · · · , θp]′ denotes a p-dimensional parameter vec-
tor, with [·]′ denoting the transpose operator. We also use the
notation xji to represent the (j − i + 1)-dimensional vector
[xi, xi+1, · · · , xj ]′ for any i, j ∈ Z with i ≤ j.

We consider a sequence of observations in the form of
binary spike trains obtained by discretizing continuous-time
observations (e.g. electrophysiology recordings), using bins of
length ∆. We assume that not more than one event fall into any
given bin. In practice, this can always be achieved by choosing
∆ small enough. The binary observation at bin i is denoted
by xi. The observation sequence can can be modeled as the
outcome of conditionally independent Poisson or Bernoulli
trials, with a spiking probability given by P(xi = 1) =: λi|Hi ,
where λi|Hi is the spiking probability at bin i given the history
of the process Hi up to bin i.

These models are widely-used in neural data analysis and
are motivated by the continuous time point processes with
history dependent conditional intensity functions [23]. For
instance, given the history of a continuous-time point process
Ht up to time t, a conditional intensity of λ(t|Ht) = λ
corresponds to the homogeneous Poisson process. As another
example, a conditional intensity of λ(t|Ht) = µ+

∫ t
−∞ θ(t−

τ)dN(τ) corresponds to a process known as the Hawkes
process [24] with base-line rate µ and history dependence
kernel θ(·). Under the assumption of the orderliness of a
continuous-time point process, a discretized approximation to
these processes can be obtained by binning the process by
bins of length ∆, and defining the spiking probability by
λi := λ(i∆|Hi∆)∆ + o(∆). In this paper, we consider dis-
crete point processes characterized by the spiking probability

λi|Hi , which are either inherently discrete or employed as an
approximation to continuous-time point process models.

Throughout the rest of the paper, we drop the dependence
of λi|Hi on Hi to simplify notation, denote it by λi and refer
to it by spiking probability. Given the sequence of observed
data xn1 , the negative log-likelihood function under the Poisson
statistics can be expressed as:

L(θ) := − 1

n

n∑
i=1

[xi log λi − λi] , (1)

where λi. Similarly, under the Bernoulli statistics, the negative
log-likelihood takes the following form:

L(θ) = − 1

n

n∑
i=1

xi log λi + (1− xi) log(1− λi). (2)

When the discrete process viewed as an approximations to
a continuous-time process, these log-likelihood functions are
known as the Jacod log-likelihood approximations [23]. We
will present our analysis for the negative log-likelihood given
by (1), but our results can be extended to other statistics
including (2) (See Appendix A for a discussion of extensions
to other models).

Throughout this paper xn−p+1 will be considered as the
observed spiking sequence which will be used for estimation
purposes. A popular class of models for λi is given by Gen-
eralized Linear Models (GLM). In its general form, a GLM
consists of two main components: an observation model and
an equation expressing some (possibly nonlinear) function of
the observation mean as a linear combination of the covariates.
In neural systems, the covariates consist of external stimuli as
well as the history of the process. Inspired by spontaneous
neuronal activity, we consider fully self-exciting processes, in
which the covariates are only functions of the process history.
As for a canonical discrete point process model inspired by
the Hawkes process, we consider a GLM for which the spiking
probability is a linear function of the process history:

λi := µ+ θ′xi−1
i−p, (3)

where µ is a positive constant representing the base-line rate,
and θ = [θ1, θ2, · · · , θp]′ is a parameter vector denoting the
history dependence of the process. We refer to this process
as the canonical self-exciting process. Other popular models
in the computational neuroscience literature include the log-
link model where λi = exp(µ+ θ′xi−1

i−p) and the logistic-link

model where λi =
exp(µ+θ′xi−1

i−p)

1+exp(µ+θ′xi−1
i−p)

. The parameter vector θ
can be thought of as the binary equivalent of autoregressive
(AR) parameters in linear AR models.

When fitted to neuronal spiking data, the parameter vector
θ exhibits a degree of sparsity [19], [25]. That is, only
certain lags in the history have a significant contribution in
determining the statistics of the process. These lags can be
thought of as the preferred or intrinsic delay in the spontaneous
response of a neuron. To be more precise, for a sparsity level
s < p, we denote by S ⊂ {1, 2, · · · , p} the support of the s
highest elements of θ in absolute value, and by θS the best
s-term approximation to θ. We also define

σs(θ) := ‖θ − θS‖1 (4)
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and
ςs(θ) := ‖θ − θS‖2 (5)

which capture the compressibility of the parameter vector θ
in the `1 and `2 sense, respectively. Note that by definition
ςs(θ) ≤ σs(θ). For a fixed ξ ∈ (0, 1), we say that θ is (s, ξ)-
compressible if σs(θ) = O(s1− 1

ξ ) [5]. Note that when ξ = 0,
the parameter vector θ is exactly s-sparse.

Finally, in this paper, we are concerned with the compressed
sensing regime where n � p, i.e., the observed data has
a much smaller length than the ambient dimension of the
parameter vector. The main estimation problem of this paper
is the following: given observations xn−p+1 from the canonical
self-exciting process, the goal is to estimate the unknown
baseline rate µ and the p-dimensional (s, ξ)-compressible
history dependence parameter vector θ in a stable fashion
(where the estimation error is controlled) when n� p.

III. THEORETICAL RESULTS

In this section, we consider two estimators for θ, namely,
the `1-regularized ML estimator and a greedy estimator, and
present the main theoretical results of this paper on the
estimation error of these estimators. Note that when µ is not
known, the following results can be applied to the augmented
parameter vector [µ,θ′]′. We analyze the case of known µ for
simplicity of presentation.

A. `1-Regularized ML Estimation

Throughout the rest of the paper, we assume that θ ∈ Θ,
where Θ is a closed convex feasible region for which 0 ≤
λi ≤ 1 given by the conditions:

1) 0 < 1′θ ≤ c1 < 1,

2) 0 < πmin ≤ µ− ‖θ‖1, (?)
3) µ+ ‖θ‖1≤ πmax < 1/2,

for some constants c1, πmin, and πmax. These assumptions
have been adopted mainly for technical reasons, and do not
incur any loss of generality in practice (see Appendix A for
details).

The natural estimator for the parameter vector is the ML
estimator, which is widely used in neuronal modeling [25],
and by virtue of (1) is given by:

θ̂ML = arg min
θ∈Θ

L(θ), (6)

In the regime of interest when n� p, the ML estimator is ill-
posed and is typically regularized with a smooth norm. In order
to capture the compressibility of the parameters, we consider
the `1-regularized ML estimator:

θ̂sp := arg min
θ∈Θ

L(θ) + γn‖θ‖1. (7)

where γn > 0 is a regularization parameter. It is easy to
verify that the objective function and constraints in Eq. (7)
are convex in θ and hence θ̂sp can be obtained using standard
numerical solvers. Note that the solution to (7) might not be
unique. However, we will provide error bounds that hold for
all possible solutions of (7), with high probability.

Input: L(θ), s?

Output: θ̂(s?)
POMP

Initialization:
{ Start with the index set S(0) = ∅

and the initial estimate θ̂
(0)
POMP = 0

for k = 1, 2, · · · , s?

j = argmax
i

∣∣∣(∇L (θ̂(k−1)
POMP

))
i

∣∣∣
S(k) = S(k−1) ∪ {j}
θ̂
(k)
POMP = argmin

supp(x)⊂S(k)

L(θ)

end

TABLE I: Point Process Orthogonal Matching Pursuit (POMP)

It is known that ML estimates are asymptotically unbiased
under mild conditions, and with p fixed, the solution converges
to the true parameter vector as n→∞. However, it is not clear
how fast the convergence rate is for finite n or when p is not
fixed and is allowed to scale with n. This makes the analysis of
ML estimators, and in general regularized M-estimators, very
challenging [22]. Nevertheless, such an analysis has significant
practical implications, as it will reveal sufficient conditions
on n with respect to p as well as a criterion to choose γn,
which result in a stable estimation of θ. Finally, note that we
are fixing the ambient dimension p throughout the analysis. In
practice, the history dependence is typically negligible beyond
a certain lag and hence for a large enough p, point process
models fit the data very well.

B. Greedy Estimation

Although there exist fast solvers to convex problems of the
type given by Eq. (7), these algorithms are polynomial time in
n and p, and may not scale well with high-dimensional data.
This motivates us to consider greedy solutions for the estima-
tion of θ. In particular, we will consider a generalization of
the Orthogonal Matching Pursuit (OMP) [26], [27] for general
convex cost functions. A flowchart of this algorithm is given
in Table I, which we denote by the Point Process Orthogonal
Matching Pursuit (POMP) algorithm. At each iteration, the
component in which the objective function has the largest
deviation is chosen and added to the current support. The
algorithm proceeds for a total of s? steps, resulting in an
estimate with s? components.

The main idea behind the generalized OMP is in the greedy
selection stage, where the absolute value of the gradient of
the cost function at the current solution is considered as the
selection metric. Consider an estimate θ̂(k−1) at the (k−1)-st
stage of the generalized OMP for a quadratic cost function of
the form ‖b−Aθ‖22, with b and A denoting the observation
vector and covariates matrix, respectively. Then, the gradient
takes the form A′(b−Aθ̂(k−1)) which is exactly the correla-
tion vector between the residual error and the columns of A
as in the original OMP algorithm.

C. Theoretical Guarantees

Recall that the parameter vector θ ∈ Rp is assumed
to be (s, ξ)-compressible, so that σs(θ) = ‖θ − θS‖1=

O(s1− 1
ξ ), and the observed data are given by the vector
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xn−p+1 ∈ {0, 1}n+p−1, all in the regime of s, n � p. The
main theoretical result regarding the performance of the `1-
regularized ML estimator is given by the following theorem:

Theorem 1. If σs(θ) = O(
√
s), there exist constants

d1, d2, d3 and d4 such that for n > d1s
2/3p2/3 log p and a

choice of γn = d2

√
log p
n , any solution θ̂sp to (7) satisfies the

bound ∥∥∥θ̂sp − θ∥∥∥
2
≤ d3

√
s log p

n
+
√
d3σs(θ)

4

√
log p

n
, (8)

with probability greater than 1−O
(

1
nd4

)
.

Similarly, the following theorem characterizes the perfor-
mance bounds for the POMP estimate:

Theorem 2. If θ is (s, ξ)-compressible for some ξ < 1/2,
there exist constants d′1, d

′
2, d
′
3 and d′4 such that for n >

d′1s
2/3p2/3 (log s)

2/3
log p, the POMP estimate satisfies the

bound ∥∥∥θ̂POMP − θ
∥∥∥

2
≤ d′2

√
s log s log p

n
+ d′3

log s

s
1
ξ−2

(9)

after s? = O(s log s) iterations with probability greater than
1−O

(
1

nd
′
4

)
.

Remarks. An immediate comparison of the sufficient condition
n = O(s2/3p2/3 log p) of Theorem 1 with those of [22] for
GLM models with i.i.d. covariates given by n = O(s log p)
reveals that a loss of order O(p2/3s−1/3) is incurred due to
the inter-dependence of the covariates. However, the sample
space of n i.i.d. covariates is np-dimensional, whereas in our
problem the sample space is only (n+p)-dimensional. Hence,
the aforementioned loss can be viewed as the price of self-
averaging of the process accounting for the low-dimensional
nature of the covariate sample space. To the best of our knowl-
edge, the dominant loss of O(p2/3) in both theorems does not
seem to be significantly improvable, as self-exciting processes
are known to converge quite slowly to their ergodic state
[28]. Surprisingly, the analysis of the sampling requirements
of linear AR models reveals a loss of O(p2/3) in the number
of measurements [29].

The sufficient condition of Theorem 2 given by n =
O(s2/3p2/3 (log s)

2/3
log p) implies an extra loss of (log s)

2/3

due to the greedy nature of the solution. Moreover, Theorem
2 requires a high compressibility level of the parameter vector
θ (ξ < 1/2), whereas Theorem 1 does not impose any extra
restrictions on ξ ∈ (0, 1). Intuitively speaking, this compar-
ison reveals the trade-off between computational complexity
and compressibility requirements for convex optimization vs.
greedy techniques, which are well-known for linear models
[6].

As mentioned earlier, similar results hold for when µ is
unknown, except with possibly slightly different constants (see
Corollary 2 in Appendix A). The constants di, d′i, i = 1, · · · , 4,
α and β are explicitly given in the proof of the theorems in
Appendix A. As for a typical numerical example, for πmin =
0.05, πmax = 0.5, the constants of Theorem 1 can be chosen
as d1 ≈ 103, d2 = 50, d3 ≈ 104 and d4 = 4. We will next

give a sketch of the proof of these theorems. The full proofs
are given in Appendix A.
Proof Sketch. The main ingredient in the proofs of Theorems
1 and 2 is inspired by the beautiful treatment of Negahban
et al. in [22] in establishing the notion of Restricted Strong
Convexity (RSC). By the convexity of the negative Jacod log-
likelihood given by Eq. (1), it is clear that a small change
in θ results in a small change in the negative Jacod log-
likelihood. However, the converse is not necessarily true.
Intuitively speaking, the RSC condition guarantees that the
converse holds: a small change in the log-likelihood implies a
small change in the parameter vector, i.e., the log-likelihood
is not too flat around the true parameter vector. A depiction
of the RSC condition for p = 2, adopted from [22], is given
in Figure 1. In Figure 1(a), the RSC does not hold since a
change along θ2 does not change the log-likelihood, whereas
the log-likelihood in Figure 1(b) satisfies the RSC.

(a) (b)

Fig. 1: Illustration of RSC (a) RSC does not hold (b) RSC
does hold.

More formally, if the log-likelihood is twice differentiable
at θ, the RSC is equivalent to existence of a lower quadratic
bound on the negative log-likelihood:

DL(∆,θ) := L(θ+∆)−L(θ)−∆′∇L(θ) ≥ κ‖∆‖22, (10)

for a positive constant κ > 0 and all ∆ ∈ Rp in a carefully-
chosen neighborhood of θ depending on s and ξ. Based on the
results of [22], when the RSC is satisfied, sufficient conditions
akin to those in Theorems 1 and 2 can be obtained by
estimating the Euclidean extent of the solution set around the
true parameter vector (see Propositions 3 and 5 in Appendix
A).

The major technical challenge for the canonical self-exciting
process, as opposed to the GLM models with i.i.d. covariates
in [22], lies in the fact that the covariates are highly inter-
dependent as they are formed by the history of the process.
Hence, it is not straightforward to establish RSC with high
probability, as the large deviation techniques used for i.i.d.
random vectors does not hold. We establish the RSC for the
canonical self-exciting process in two steps (see Lemma 1
in Appendix A-A). First, we show that RSC holds for the
expected value of the negative log-likelihood E[L(θ)], and
then by invoking results on concentration of dependent random
variables show that the negative log-likelihood L(θ) resides
in a sufficiently small neighborhood of E[L(θ)] with high
probability, and hence satisfies the RSC.

The rest of the proof of Theorem 1 (given in Appendix A-B)
establishes that upon satisfying the RSC, the estimation error
can be suitably bounded. Similarly, Theorem 2 is proven using
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the RSC of the canonical self-exciting process together with
the results adopted from [26] on the performance of OMP for
convex cost functions (see Appendix A-C).

IV. APPLICATION TO SIMULATED AND REAL DATA

In this section, we study the performance of the conven-
tional ML estimator, the `1-regularized ML estimator, and the
POMP estimator on simulated data as well as real spiking
data recorded from mouse’s lateral geniculate nucleus (LGN)
neurons.

A. Simulation Studies

In order to simulate spiking data governed by the canonical
self-exciting process, we use the commonly-used thinning
technique [30]. Thinning is a standard technique for generating
inhomogeneous point process data from arbitrary spiking prob-
abilities. Suppose that the spiking probability is upper bounded
as λi ≤ λmax for some λmax almost surely for i = 1, 2, · · ·.
The thinning method first generates a homogeneous point
process (Poisson) with rate λmax, which we will denote by
xhi , for i = 1, 2, · · ·. Then, starting at i = 1, the spiking
probability λi is computed using Eq. (3) in order to generate
a Bernoulli random variable bi ∼ Bernoulli

(
λi
λmax

)
. Then, the

point process given by xi := bix
h
i has the spiking probability

given by Eq. (3).
Figure 2 shows the first 500 samples of the canonical

self-exciting process of length n = 1000 generated using a
history dependence parameter vector of length p = 50 shown
in Figure 3(a) with µ = 0.1. The parameter vector θ is
compressible with a sparsity level of s = 3 and σ3(θ) = 0.35.
A value of γn = 0.03 is used to obtain the `1-regularized
ML estimate, which is slightly tuned around the theoretical
estimate given by Theorem 1. Figures 3(b), 3(c), and 3(d) show
the estimated history dependence parameter vectors using ML,
`1-regularized ML, and POMP, respectively. It can be readily
visually observed that regularized ML and POMP significantly
outperform the ML estimate.

100 200 300 400 500
0

1

0

Fig. 2: A sample of the simulated canonical self-exciting
process.

In order to quantify this performance gain, we repeated the
same experiment by generating realizations corresponding to
randomly chosen supports of size s for θ and spiking events
of length n, using a range of sparsity levels s = 2, 3, 5 and 10
as well as 102 ≤ n ≤ 106. In each case, the magnitudes of the
components of θ were chosen to satisfy the assumptions (?).
For a given θ, the mean-square-error (MSE) of the estimate θ̂
is defined as Ê{‖θ̂− θ‖22}, where Ê{·} is the sample average
over the realizations of the process. A comparison of the
MSE of the estimators is shown in Figure 4. As it can be
inferred from Figure 4, the `1-regularized ML and POMP have
a systematic performance gain over the ML estimate, with the
former outperforming the rest.

0

0.05

0.1

10 20 30 40 501

(a) True

0

0.1

0.05

10 20 30 40 501

(b) ML

0

0.05

0.1

10 20 30 40 501

(c) `1-regularized ML

0

0.05

0.1

10 20 30 40 501

(d) POMP

Fig. 3: (a) True parameters vs. (b) ML, (c) `1-regularized ML,
and (d) POMP estimates.

The MSE comparison in Figure 4 requires one to know
the true parameters. In practice, the true parameters are un-
known, and statistical tests are typically used to assess the
goodness-of-fit of the estimates to the observed data. We use
the Kolmogorov-Smirnov (KS) test and the autocorrelation
function (ACF) test to assess the goodness-of-fit. These tests
are based on the time-rescaling theorem for point processes
[31], which states that if the time axis is rescaled using the
conditional intensity of an inhomogeneous Poisson process,
the resulting point process is a homogeneous Poisson process
with unit rate. Thereby, using the estimated conditional in-
tensities, one can test for the validity of the time-rescaling
theorem via two statistical tests: the KS test reveals how close
the empirical quantiles of the time-rescaled point process to the
true quantiles of a unit rate Poisson process, and the ACF test
reveals how close the ISI values of the time-rescaled process
are to the true ISI distribution of a unit rate Poisson process.
Details of these tests are given in Appendix C.

Figure 5 shows the KS and ACF tests (at 95% and 99%
confidence levels, respectively) for the ML `1-regularized ML,
and the POMP estimates from Figure 3. The yellow shades
mark the regions below the specified confidence levels. The
ML estimate fails to pass either test, while the regularized and
POMP estimates satisfy both tests.

B. Application to the analysis of LGN spiking activity

In this section, we compare the performance of the ML, `1-
regularized ML, and POMP estimators in modeling the spon-
taneous spiking activity recorded from the lateral geniculate
nucleus (LGN) neurons. The LGN is part of the thalamus in
the brain, which acts as a relay from the retina to the primary
visual cortex [32]. The data were recorded at 1ms resolution
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101

100
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10-2

102 104 106

ML
POMP
-regularized ML

ML
POMP
-regularized ML

ML
POMP
-regularized ML

ML
POMP
-regularized ML

Fig. 4: MSE performance of the ML, `1-regularized ML and
POMP estimators.

from the mouse LGN neurons using single-unit recording
[33]. We used about 5 seconds of data from one neuron
for the analysis. In order to capture the history dependence
governing the spontaneous spiking activity of the LGN neuron,
we model the spiking probability using the canonical self-
exciting process model with p = 100 (∆ = 1ms). Figure 6
shows the spiking data used in the analysis.

Figure 7 shows the estimated history dependence parameter
vectors using the three methods. The regularized parameter
γn was chosen using a two-fold cross-validation refinement
around the value obtained from our theoretical results. Both
the regularized ML (Figure 7(b)) and POMP (Figure 7(c))
estimates capture significant history dependence components
around a lag of 90 − 95 ms (marked by the upward arrows).
In [34], an intrinsic neuronal oscillation frequency of around
10 Hz has been reported in around 30% of all classes of
mouse retinal cells under experiment, using combined two-
photon imaging and patch-clamp recording. Our results are
indeed consistent with the above mentioned findings about
the intrinsic spiking frequency of retinal neurons. To see this,
we consider the power spectral density of the canonical self-
exciting process given by:

S(ω) =
1

2π

(
π2
?δ(ω) +

π? − π2
?

(1− 1′θ)
2 |1−Θ(ω)|2

)
, (11)

where Θ(ω) is the discrete-time Fourier transform of θ and
π? = µ

1−1′θ denotes the stationary distribution probability of
spiking. The derivation of the power spectral density is given
in Appendix A. The power spectral density of the canonical
self-exciting process resembles the Bartlett spectrum of the
Hawkes process [24], [35], [36], whose peaks correspond to
the significant oscillatory components of the underlying point
process. Our estimated parameter vectors θ using the regu-
larized ML and POMP have significant nonzero components
around lags of 90 ≤ k ≤ 95. As a result, S(ω) peaks at
ω = 2π

k∆ . Hence, f = 1
k∆ is an estimate of the significant

intrinsic frequency of the underlying self-exciting process.
Using the estimated numerical values, the intrinsic frequency
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Fig. 5: KS and ACF tests at 95% and 99% confidence
levels, respectively, for the ML, `1-regularized ML and POMP
estimates.
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Fig. 6: The LGN spiking data used in the analysis.

is around 10.5− 11Hz, which is consistent with experimental
findings of [34]. Compared to the method in [34], our estimates
are obtained using much shorter recordings of spiking activity
and provide a principled framework to study the oscillatory
behavior of LGN neurons using the theory of point processes.

Note that there is a difference in the orders of magnitudes
of the POMP estimate compared to the ML and regularized
ML estimates. This is due to the fact that the POMP estimate
is exactly s-sparse, whereas the ML and regularized ML
estimates consist of p = 100 non-zero values. In order to
assess the goodness-of-fit of these estimates, we invoke the KS
and ACF tests. Figure 8 shows the corresponding KS and ACF
test plots. As it is implied from Figure 8(a), the ML estimate
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Fig. 7: (a) ML, (b) `1-regularized ML, and (c) POMP estimates
of the LGN spiking parameters.

fails both tests due to overfitting, whereas the regularized ML
(Figure 8(b)) passes both tests at the specified confidence
levels. The POMP estimate (Figure 8(c)), however, passes
the KS test while marginally failing the ACF test. The latter
observation implies that the seemingly negligible components
of the parameter vector captured by the regularized ML
estimate seem to be important in explaining the statistics of
the observed data.

C. Application to the analysis of retinal gangllion cell spiking
activity

In this section, we apply the ML, `1-regularized ML, and
POMP estimators to spontaneous spiking data recorded from
the retinal ganglion cells (RGC) of neonatal and adult ferrets
[37]. The retinal ganglion cells are located in the innermost
layer of the retina. They integrate information from photore-
ceptors and project them into the brain [38]. The data were
recorded using a multi-electrode array from the ferret retina at
50 µs [37]. We used 2.5 seconds of data from one neuron for
the analysis (neuron 2, session 1, adult data set, CARMEN
data base [39]). In order to capture the history dependence
governing the spontaneous spiking activity of the RGC neuron,
we model the spiking probability using a logistic link model

of the form λi =
exp(µ+θ′xi−1

i−p)

C+exp(µ+θ′xi−1
i−p)

, with C = 100 and p = 50

(∆ = 25 ms).
Figure 9 shows the spiking data used in our analysis. The

RGC activity in the adult ferret is characterized by bursts of
activity with a mean firing rate of 9±7 Hz, which are separated
by 0.5− 1 s intervals [37].

Figure 10 shows the estimated history dependence pa-
rameter vectors using the three methods. The regularized
parameter γn was chosen using a two-fold cross-validation
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Fig. 8: KS and ACF tests at 99% confidence level, for the ML,
`1-regularized ML and POMP estimates.
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Fig. 9: The RGC spiking data used in the analysis.

refinement around the value obtained from our theoretical
results. Both the regularized ML (Figure 10(b)) and POMP
(Figure 10(c)) estimates capture significant self-exiting history
dependence components around the lags of 150 ms and
0.65 − 0.75 s (marked by the upward arrows). These self-
exciting components are consistent with the aforementioned
empirical estimates of [37], as they indicate that the data can
be characterized by a combination of 1

150 ms = 6.66 Hz bursts
separated by gaps of length 0.65− 0.75 s.

Figure 11 shows the KS and ACF tests for the three
methods. As shown in Figure 11(a), the ML estimate fails
the KS test due to overfitting, whereas the regularized ML
(Figure 11(b)) and POMP (Figure 11(c)) pass both tests at
the specified confidence levels. In order to further inspect the
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Fig. 10: (a) ML, (b) `1-regularized ML, and (c) POMP
estimates of the RGC spiking parameters.

goodness-of-fit of these methods, we plot the estimated spiking
rates in Figure 12. The ML estimate shown in Figure 12(a)
overfits the spiking events by rapidly saturating the rate to
either 0 and 1, which results in undesired high rate estimates
where there are no spikes. On the contrary, the regularized
ML (Figure 12(b)) and POMP (Figure 12(c)) provide a more
reliable estimate of the rates consistent with the spiking events.

V. DISCUSSION AND FUTURE WORK

In this paper, we studied the sampling properties of `1-
regularized ML and greedy estimators for a canonical self-
exciting process. The main theorems provide non-asymptotic
sampling bounds on the number of measurements, which lead
to stable recovery of the parameters of the process. To the best
of our knowledge, our results are the first of this kind, and can
be readily generalized to various other classes of self-exciting
point processes, such as processes with logarithmic or logistic
link.

Compared to the existing literature, our results bring about
two major contributions. First, we provide a theoretical un-
derpinning for the advantage of `1-regularization in ML es-
timation as well as greedy estimation in problems involving
point process observations. These methods have been used in
neuroscience in an ad-hoc fashion. Our results establish the
utility of these techniques by characterizing the underlying
sampling trade-offs. Second, our analysis relaxes the widely-
assumed hypotheses of i.i.d. covariates. This assumption is
often violated when working with history-dependent data such
as neural spiking data.

We also verified the validity of our theoretical results
through simulations studies as well as application to real
neuronal spiking data from mouse’s LGN and ferret’s RGC
neurons. These results show that both the regularized ML
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Fig. 11: KS and ACF tests at 95% confidence level, for the
ML, `1-regularized ML and POMP estimates.

and the greedy estimates significantly outperform the widely-
used ML estimate. In particular, through making a connection
with the spectrum of discrete point processes, we were able
to quantify the estimation of the intrinsic firing frequency
of LGN neurons. Our future work includes generalization of
our analysis to multivariate point process models, which will
allow to infer network properties from multi-unit recordings
of neuronal ensembles.
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APPENDIX A
PROOFS OF MAIN THEOREMS

Recall that if the log-likelihood is twice differentiable with
respect to θ, the Restricted Strong Convexity (RSC) property
implies the existence of a lower quadratic bound on the
negative log-likelihood:

DL(∆,θ) := L(θ+∆)−L(θ)−∆′∇L(θ) ≥ κ‖∆‖22, (12)
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Fig. 12: (a) ML, (b) `1-regularized ML, and (c) POMP
estimates of the RGC spiking rate. Blue vertical lines show
the locations of the spikes, and red traces show the estimated
rate.

for a positive constant κ > 0 and all ∆ ∈ Rp satisfying:

σS(∆) ≤ 3‖∆S‖1+4σS(θ). (13)

for any index set S ⊂ {1, 2, · · · , p} of cardinality s. The latter
condition is known as the cone constraint.

The canonical self-exciting process can be viewed as a
Markov chain with states Xi = xi−1

i−p. Since each xi has two
possible values, there are 2p possible states. This Markov chain
is irreducible since transition from any state to any other state
is possible in at most p steps. Also, transition from an all-zero
state to itself is possible. Hence the chain is aperiodic as well.
This implies that there exists a stationary distribution for the
Markov chain. We also know that if {Xi}∞i=1 is a stationary
Markov Chain, then for any functional f(.), {f(Xi)}∞i=1 is
a strictly stationary stochastic process (SSS). Therefore the
canonical self-exciting process and the spiking probability
sequence λn1 are both SSS. In particular, we have

π? := E[xi] = E [E [xi|λi]] = E[λi] = µ+ π?1
′θ.

Hence, the stationary probability π? satisfies:

π? =
µ

1− 1′θ
. (14)

Note that by (14), in order for the process to be stationary
it is necessary that 1′θ < 1. The gap 1 − 1′θ will play
an important role in controlling the convergence rate of the
aforementioned Markov chain to its stationary distribution (see
the proof of Proposition 2 below).

Recall the technical assumptions θ ∈ Θ given by (?):

1) 0 < 1′θ ≤ c1 < 1,

2) 0 < πmin ≤ µ− ‖θ‖1, (?)
3) µ+ ‖θ‖1≤ πmax < 1/2.

The first assumption results in the stationarity of the canon-
ical self-exciting process. The second and third assumptions
make sure that the process does not become all-zero, and that
it has a sufficiently fast mixing (See the proof of Proposition
2 below). For simplicity we will also use the notation

Sp(t) := {ν | ‖ν‖p= t} .

to denote the p-norm ball of radius t.

A. A Key Lemma

The proofs of Theorems 1 and 2 are mainly based on
the following key lemma establishing the Restricted Strong
Convexity condition for the canonical self-exciting process:

Lemma 1 (Restricted Strong Convexity of the canonical
self-exciting process). Let xn−p+1 denote a sequence of sam-
ples from the canonical self-exciting process with parameters
{µ,θ} satisfying the conditions given by (?). Then, for n ≥
d1s

2/3p2/3 log p, the negative log-likelihood function L(θ)
satisfies the RSC property with a positive constant κ > 0 with
probability at least 1− 2 exp

(
− cκ

2n3

s2p2

)
, for some constant c,

and both κ and c are only functions of d1, c1, πmin, and πmax.

Proof of Lemma 1. The proof is inspired by the elegant treat-
ment of Negahban et al. [22]. The major difficulty in the
proof lies in the high inter-dependence of the covariates and
observations.

A second order Taylor expansion of the negative log-
likelihood (1) around θ yields:

DL(∆,θ) = L(θ + ∆)− L(θ)−∆′∇L(θ)

=
1

n

n∑
i=1

xi

(
∆′xi−1

i−p
)2(

µ+ θ′xi−1
i−p + ν(∆′xi−1

i−p)
)2

≥ 1

π2
max

1

n

n∑
i=1

xi
(
∆′xi−1

i−p
)2
,

for some ν ∈ [0, 1]. The inequality follows from the fact that
both θ and θ + ∆ satisfy (?), and hence:

πmin < µ+ θ′xi−1
i−p + ν∆′xi−1

i−p < πmax.

For simplicity of notation, we define the n-sample empirical
expectation as follows:

Ên{f(x·)} :=
1

n

n∑
i=1

f(xi)

for any measurable function f(x·). Note that the subscript x·
refers to an index in the set {1, 2, · · · , n}. The result of the
lemma is equivalent to proving that

Ên
[
x·
(
∆′x·−1

·−p
)2] ≥ κ‖∆‖22, (15)

holds with probability greater than 1−2 exp
(
− cκ

2n3

s2p2

)
. Since

both sides of (15) are quadratic in ∆, the statement is
equivalent to proving

Ên
[
x·(∆

′x·−1
·−p)

2
]
≥ κ,

for all ‖∆‖2∈ S2(1). We establish this in two steps:
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Step 1. First, we show that the statement holds for the true
expectation:

E
[
x·
(
∆′x·−1

·−p
)2 ] ≥ κl > 0 (16)

for some κl which will be specified below, for all ‖∆‖2∈
S2(1). To establish the inequality (16), we need the following
lemma:

Lemma 2. Let R ∈ Rp×p be the p × p covariance matrix
of a stationary process with power spectral density S(ω), and
denote its maximum and minimum eigenvalues by λmax(p) and
λmin(p) respectively then λmax(p) is increasing in p, λmin(p)
is decreasing in p and we have

λmin(p) ↓ inf
ω
S(ω), (17)

and
λmax(p) ↑ sup

ω
S(ω). (18)

Proof. This is a standard result in spectral analysis. See for
example [41].

We can therefore lower-bound E
[
x·
(
∆′x·−1

·−p
)2]

by:

E
[
x·
(
∆′x·−1

·−p
)2]

= E
[
E[x·

(
∆′x·−1

·−p
)2 |x·−1

·−p]
]

= E
[(
µ+ θ′x·−1

·−p
) (

∆′x·−1
·−p
)2]

> πminE
[(

∆′x·−1
·−p
)2]

= πmin∆′E
[
x·−1
·−px

·−1′

·−p

]
∆ = πmin∆′R∆

≥ πminλmin(p) ≥ πmin inf
ω
S(ω),

where the first inequality follows from the first assumption in
(?) and the second inequality follows from Lemma 2. Finally
we will show that the power spectral density is bounded
away from zero. Let r∞−∞ and c∞−∞ denote the autocorrelation
and autocovariance values of the process, respectively. By the
stationarity of the process we have:

rk = E [x·+kx·] = E [xkx0] = E
[
E
[
xkx0|xk−1

−∞
]]

= E
[
µx0 + θ′xk−1

k−px0

]
= µπ? + θ′rk−1

k−p.

for k > 0. Similarly, by subtracting the means we have the
following identity for the autocovariance:

ck = θ′ck−1
k−p. (19)

A straightforward calculation gives c0 = π? − π2
?. Eq. (19)

resembles the Yule-Walker equations for an AR process of
order p with parameter θ and the innovations variance given
by σ2 =

π?−π2
?

(1−1′θ)2 . Thus, the power spectral density of the
canonical self-exciting process can be expressed as:

S(ω) =
1

2π

(
π2
?δ(ω) +

π? − π2
?

(1− 1′θ)
2 |1−Θ(ω)|2

)
. (20)

Thus the bound of Eq. (16) is established with κl :=
πminπ?(1− π?)/8π.

Step 2. We now show that the empirical and the true expec-
tations of x·

(
∆′x·−1

·−p
)2

are close enough to each other. Let

D∆,n := Ên
[
x·
(
∆′x·−1

·−p
)2]− E

[
x·
(
∆′x·−1

·−p
)2]

.

and
Dn := sup

∆∈S2(1)

|D∆,n|

We will prove that

P
[
Dn ≥

κl
4

]
≤ 2 exp

(
−cκ

2
l n

3

s2p2

)
, (21)

for some constant c, from which the statement of the lemma
follows by taking κ = κl/4. In order to establish the concen-
tration inequality of Eq. (21), we need to invoke a result from
concentration of dependent random variables. First, we define
the normalized Hamming metric between two sequences xn1
and yn1 is defined as d(xn1 , y

n
1 ) = 1

n

∑n
i=1 1(xi 6= yi).

We will now show that (23) implies that Dn has Lipschitz
continuity with respect to the normalized Hamming distance.
This is key to the rest of our proof for using a concentration
inequality for dependent random variables. In order to com-
plete our proof we need the following lemma which gives us
the a concentration inequality for dependent random variables.
The normalized Hamming metric between two sequences xn1
and yn1 is defined as d(xn1 , y

n
1 ) = 1

n

∑n
i=1 1(xi 6= yi). The

following proposition establishes that the empirical expecta-
tion appearing in Eq. (15) is is O( spn )-Lipschitz with respect
to the normalized Hamming metric:

Proposition 1. Dn is O( spn )-Lipschitz with respect to the
normalized Hamming metric.

Proof. First, by evaluating the first order optimality conditions
of the solution θ̂sp, it can be shown that the error vector ∆ =

θ̂sp − θ satisfies the inequality given by (13)

σS(∆) ≤ 3‖∆S‖1+4σS(θ).

with S denoting the support of the best s-term approximation
to θ (see for example [22]). By the assumption of σS(θ) =
O(
√
s), we can choose a constant c0 such that σS(θ) ≤ c0

√
s.

Hence,

‖∆‖1 ≤ 4‖∆S‖1+σS(θ)

≤ (4 + c0)
√
s‖∆S‖2≤ (4 + c0)

√
s (22)

where we have used the fact that ‖∆S‖1≤
√
s‖∆S‖2≤

√
s

for all ∆ ∈ S2(1). Therefore for all i ∈ {1, 2, · · · , n}, we
have:

0 ≤ xi
(
∆′xi−1

i−p
)2 ≤ (∆′xi−1

i−p
)2 ≤ ‖∆‖21 ≤ (4 + c0)2s.

(23)
We first prove the claim for D∆,n. To establish the latter,

we need to prove

1

n

∣∣∣∣∣
n∑
i=1

xi
(
∆′xi−1

i−p
)2 − yi (∆′yi−1

i−p
)2∣∣∣∣∣ ≤ Cd(xn−p+1, y

n
−p+1),

for some C = O( spn ), or equivalently∣∣∣∣∣
n∑
i=1

xi
(
∆′xi−1

i−p
)2 − yi (∆′yi−1

i−p
)2∣∣∣∣∣ ≤ C ′

n∑
i=−p+1

1(xi 6= yi),

(24)
for some C ′ = O(s). Let us start by setting the values of
xn−p+1 equal to those of yn−p+1 and iteratively change xj to 1−
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xj for all indices j where xj 6= yj to obtain the configuration
given by xn−p+1. For each such change (say xj to 1−xj), the
left hand side changes by at most∣∣∣∣∣

n∑
i=1

xi
(
∆′xi−1

i−p
)2
|xj=1

− xi
(
∆′xi−1

i−p
)2
|xj=0

∣∣∣∣∣
≤ xj

(
∆′xj−1

j−p

)2

+ 2
∑
i6=j

xi|∆i−j |‖∆‖1

≤ 3‖∆‖21≤ 3(4 + c0)2s,

where we have used the inequality given by Eq. (23). Hence,
the C can be taken as 3(4 + c0)2sp/n and the claim of the
proposition for D∆,n follows. A very similar argument can
be used to extend the claim to Dn. Let ∆? := ∆?(xn−p+1)
be the ∆ for which the supremum in the definition of Dn

is achieved (such a choice of ∆ exists by the Weierstrass
extreme value theorem). Since ∆? also satisfies (22), a similar
argument shows that Dn is O( spn )-Lipschitz (with possibly
different constants).

Now, let H = [xi−2
i−p, 1] and Ĥ = [xi−2

i−p, 0] be two vectors
(history components) of length p which only differ in their
last component, and let the mixing coefficient η̄ij for j ≥ i
be defined as:

η̄ij = ‖p(xnj |H)− p(xnj |Ĥ)‖TV , (25)

with ‖·‖TV denoting the total variation difference of the
probability measures induced on {0, 1}n−j+1. Also, let

ηij = sup
H,Ĥ

η̄ij ,

And
Qn,i := 1 + ηi,i+1 + · · ·+ ηi,n.

We can know invoke Theorem 1.1 of [40] and state the
following proposition:

Proposition 2. If Dn is C-Lipschitz and q := max1≤i≤nQn,i,
then

P [|Dn − E[Dn]|≥ t] ≤ 2 exp

(
−2nt2

qC2

)
.

Proof. The proof is identical to the beautiful treatment of
[40] when specializing the underlying function of the variables
xi−p+1 to be Dn.

Proposition 1 establishes that C = C ′sp/n, for some
constant C ′. Now, we have

ηij ≤ 2n−j+1|πn−j+1
max − πn−j+1

min |≤ (2πmax)
n−j+1

,

where we have used the fact that each element of the mea-
sures p(xnj |H) and p(xnj |Ĥ) satisfies the second assumption
in (?) and that the size of the state space {0, 1}n−j+1 is
given by 2n−j+1. Since additionally we have πmax < 1/2,
ηij ≤ ρn−j+1 for ρ := 2πmax < 1. Hence, Qn,i ≤ 1

1−ρ for
all i, and q ≤ 1

1−ρ by definition.
Using the statement of Proposition 2, we get:

P
[
Dn ≥ E[Dn] +

κl
2

]
≤ 2 exp

(
−n3κ2

l (1− ρ)

2C ′s2p2

)
. (26)

It only remains to show that the expectation in (26) can be
suitably bounded. Note that we have

E[Dn] = E[|D∆?,n|] =

∫ ∞
0

(1− FD∆?,n
(t))dt

≤
∫ ∞

0

2 exp

(
−2(1− ρ)n3t2

C ′s2p2

)
dt = 2

√
C ′π

(1− ρ)

ps

n3/2
.

Thus choosing n ≥ d1s
2/3p2/3 log p, for some positive con-

stant d1, E[Dn] drops as 1/log3/2 p, and will be smaller than
κl/4 for large enough p. Hence, combined with (26) and by
defining c := 1−ρ

2C′ we have:

P
[
Dn ≥

κl
4

]
≤ 2 exp

(
−cn3κ2

l

s2p2

)
which establishes the claim of the lemma.

Lemma 1 can be viewed as the key result in the proofs of
Theorems 1 and 2 which follow next.

B. Proof of Theorem 1

We first restate the main result of [22] concerning RSC and
its implications in controlling the estimation error for GLMs:

Proposition 3. For a negative log-likelihood L(θ) which
satisfies the RSC with parameter κ, every solution to the
convex optimization problem (7) satisfies∥∥∥θ̂sp − θ∥∥∥

2
≤ 2γn

√
s

κ
+

√
2γnσs(θ)

κ
(27)

with a choice of the regularization parameter

γn ≥ 2 ‖∇L(θ)‖∞ . (28)

Proof. The proof is a special case of Theorem 1 of [22].

The first term in the bound (28) is increasing in s and
corresponds to the estimation error of the s largest components
of θ in magnitude, whereas the second term is decreasing
in s and represents the cost of replacing θ with its s-sparse
approximation. Note that by (27) and (28), we need to have

E [∇L(θ)] = 0,

in order for the upper bound (27) to tend to 0 as n→∞.
Next, we will establish a suitable upper bound on
‖∇L(θ)‖∞ which holds with high probability and provides
the appropriate scaling of γn. From Eq. (1), we have

∇L(θ) =
1

n

n∑
i=1

[
xi − (µ+ θ′xi−1

i−p)
] xi−1

i−p

µ+ θ′xi−1
i−p

. (29)

We proceed in two steps:
Step 1. We first show that

E [∇L(θ)] = 0. (30)
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To see this, we use the law of iterated expectations on the ith
term as follows:

E

[
[xi − (µ+ θ′xi−1

i−p)]
xi−1
i−p

µ+ θ′xi−1
i−p

]

= E

[
E

[
xi − (µ+ θ′xi−1

i−p)
xi−1
i−p

µ+ θ′xi−1
i−p

∣∣∣∣xi−1
i−p

]]

= E

E [xi − (µ+ θ′xi−1
i−p)

∣∣∣xi−1
i−p

]
︸ ︷︷ ︸

0

xi−1
i−p

µ+ θ′xi−1
i−p

 = 0 (31)

Summing over i, establishes (30).
Step 2. We next show that the summation given by (29)
is concentrated around its mean. The iterated expectation
argument used in establishing (31) implies that

(∇L(θ))i =
[
xi − (µ+ θ′xi−1

i−p)
] xi−1

i−p

µ+ θ′xi−1
i−p

is a martingale with respect to the filtration given by

Fi = σ
(
xi−p+1

)
,

where σ(·) denote the sigma-field generated by the random
variables in its argument. We will now state the following
concentration result for sums of bounded and dependent
random variables [42]:

Proposition 4. Fix n ≥ 1. Let Zi’s be bounded Fi-measurable
random variables, satisfying for each i = 1, 2, · · · , n,

E [Zi|Fi−1] = 0, almost surely.

Then there exists a constant c such that for all t > 0,

P

(
1

n

n∑
i=1

Zi − E[Zi] ≥ t

)
≤ exp

(
−cnt2

)
.

Proof. This result is a special case of Theorem 2.5 of [42] for
bounded random variables.

Proposition 4 implies that

P (|(∇L(θ))i| ≥ t) ≤ exp(−cnt2). (32)

By union bound, we get:

P
(
‖∇L(θ)‖∞ ≥ t

)
≤ exp(−ct2n+ log p). (33)

Choosing t =
√

1+α1

c

√
log p
n for some α1 > 0 yields

P

(
‖∇L(θ)‖∞ ≥

√
1 + α1

c

√
log p

n

)
≤ 2 exp(−α1 log p)

≤ 2

nα1
. (34)

Hence, a choice of γn = d2

√
log p
n with d2 :=

√
1+α1

c satisfies
(28) with probability at least 1 − 2

nα1
. Combined with the

result of Lemma 1 for n > d1s
2/3p2/3 log p, we have that the

RSC is satisfied with a constant κ with a probability at least
1− 1

pα2
≥ 1− 1

nα2
for some constant α2. Finally, Proposition

3 establishes the claim of Theorem 1.

C. Proof of Theorem 2

The proof is mainly based on the following proposition,
adopted from Theorem 2.1 of [26], stating that the greedy
procedure is successful in obtaining a reasonable s?-sparse
approximation, if the cost function satisfies the RSC:

Proposition 5. Suppose that L(θ) satisfies RSC with a con-
stant κ > 0. Let s? be a constant such that

s? ≥ 4s

π2
minκ

log
20s

π2
minκ

= O(s log s), (35)

Then, we have ∥∥∥θ̂(s?)
POMP − θS

∥∥∥
2
≤
√

6εs?

κ
,

where εs? satisfies

εs? ≤
√
s? + s‖∇L(θS)‖∞. (36)

Proof. The proof is a specialization of the proof of Theorem
2.1 in [26] to our setting.

Lemma 1 establishes the RSC for the negative log-
likelihood function. In order to complete the proof of Theorem
2, we need to bound ‖∇L(θS)‖∞. We have

E [∇L(θS)] = E

[
1

n

n∑
i=1

[
xi − (µ+ θ′Sx

i−1
i−p)

] xi−1
i−p

µ+ θ′Sx
i−1
i−p

]

=
1

n

n∑
i=1

E

[
E
[
(θ − θS)′xi−1

i−p

∣∣∣xi−1
i−p

] xi−1
i−p

µ+ θ′Sx
i−1
i−p

]
≤ c2σs(θ)1.

where we have used the fact that 0 ≤ xi ≤ 1 for all i, and
c2 > 0 is a positive constant. Invoking the result of Proposition
4 together with the union bound yields:

P

(
‖∇L(θS)‖∞≥ c1

√
log p

n
+ c2σs(θ)

)
≤ 2

nβ1
.

for some constants c1 and β1. Hence, we get the following
concentration result for εs? :

P

(
εs? ≥

√
s? + s

(
c1

√
log p

n
+ c2σs(θ)

))
≤ 2

nβ1
. (37)

Noting that by (35) we have s? + s = O(s log s) ≤ c0s log s,
for some constant c0, and invoking the result of Lemma 1, we
get:∥∥∥θ̂(s?)

POMP − θS
∥∥∥

2
≤ d′2

√
s log s log p

n
+ d′3s log sσs(θ)

≤ d′2

√
s log s log p

n
+ d′3

log s

s
1
ξ−2

,

where d′2 =
√
c0c1 and d′3 =

√
c0c2. with proba-

bility
(

1− exp
(
− cκ2n3

s2(log s)2p2

)) (
1− 2

nβ1

)
. Choosing n >

d′1s
2/3(log s)2/3p2/3 log p establishes the claimed success

probability of Theorem 2. Finally, we have:∥∥∥θ̂(s?)
POMP − θ

∥∥∥
2

=
∥∥∥θ̂(s?)

POMP − θS + θS − θ
∥∥∥

2

≤
∥∥∥θ̂(s?)

POMP − θS
∥∥∥

2
+ ‖θS − θ‖2.
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Using ‖θS − θ‖2≤ σs(θ) = O
(

1

s
1
ξ
−1

)
completes the proof.

APPENDIX B
EXTENSIONS OF THE MAIN RESULTS

For simplicity and clarity of presentation, we have opted
to present the proofs for the case of known µ and for the
canonical self-exciting process as a canonical discrete point
process model. The following corollary extends our results to
the case of unknown µ.

Corollary 1. The claims of Theorems 1 and 2 hold when µ
is not known, except for possibly slightly different constants.

Proof. The claim is a direct consequence of the boundedness
of covariates and can be treated by replacing θ with the aug-
mented parameter vector [µ,θ′]′ and augmenting the covariate
vectors with an initial component of 1. The reader can easily
verify that all the proof steps can be repeated in the same
fashion.

The canonical self-exciting process can be generalized to a
larger class of point processes by generalization of its spiking
probability function. In a more general form we can consider
a spiking probability function given by

λi = φ
(
θ′xi−1

i−p
)
, (38)

where φ(·) is a possibly nonlinear function. In their continuous
form, such processes are referred to as the nonlinear Hawkes
process [43]. It has been shown that [44] for an α-Lipschitz
function φ(.) such that

α1′θ < 1,

a unique stationary process satisfying (38) exists (even when
p → ∞). Two of the commonly-used models in neural data
analysis are the log-link and logistic-link models correspond-
ing to Poisson and Bernoulli statistics, respectively, which
we discussed in Section II (See also [25] and [20]). Our
prior numerical studies in [45] revealed a similar performance
improvement of the `1-regularized ML and the greedy solution
over the ML estimate for the log-link model. Indeed, due
to the boundedness of the covariates, the function φ(·) for
these models will be Lipschitz, and hence the resulting point
processes will be stationary. The latter fact is key to extending
our proofs to other models and is summarized by the following
corollary:

Corollary 2. The claims of Theorems 1 and 2 hold when
the spiking probability is given by λi = φ

(
θ′xi−1

i−p
)

for some
continuous and twice-differentiable function φ(·) (e.g., φ(x) =
exp(x) or φ(x) = logit−1(x)), except for possibly slightly
different constants.

Proof. The claim is a direct consequence of the boundedness
of covariates which results in φ(·) being Lipschitz and hence
the stationarity of the underlying process. Moreover, for twice-
differentiable φ(·), the proof of Lemma 1 can be generalized
in a straightforward fashion. The reader can easily verify that
all the remaining portions of the proofs of the main theorems
can be repeated for such φ(·) in a similar fashion to that of
the canonical self-exciting process.

APPENDIX C
GOODNESS-OF-FIT TESTS FOR POINT PROCESS MODELS

In this appendix, we will give an overview of the statistical
tools used to assess the goodness-of-fit of point process
models. A detailed treatment can be found in [25].

A. The Time-Rescaling Theorem

Let 0 < t1 < t2 < · · · be a realization of a continuous point
process with conditional intensity λ(t) > 0, i.e. tk is the first
instance at which N(tk) = k. Define the transformation

zk := Z(tk) =

∫ tk

tk−1

λ(t)dt. (39)

Then, the transformed point process with events occurring at
t′k =

∑k
i=1 zk corresponds to a homogeneous Poisson process

with rate 1. Equivalently, z1, z2, · · · are i.i.d exponential ran-
dom variables. The latter can be used to construct statistical
tests for the goodness-of-fit.

B. The Komlogorov-Smirnov Test for Homogeneity

Suppose that we have obtained the rescaled process through
(39) with the estimated conditional intensity. When applying
the time-rescaling theorem to the discretized process, if the
estimated conditional intensity is close to its true value, the
rescaled process is expected to behave as a homogeneous
Poisson process with rate 1. The Kolmogorov-Smirnov (KS)
test can be used to check for the homogeneity of the process.
Let zk’s be the rescaled times and define the transformed
rescaled times by the inverse exponential CDF:

uk := 1− e−zk .

If the true conditional intensity was used to rescale the
process, the random variables uk must be i.i.d. Uniform(0, 1]
distributed. The KS test plots the empirical qualities of uk’s
versus the true quantiles of the uniform density given by
bk = k−1/2

J , where J is the total number of observed spikes. If
the conditional intensity is well estimated, the resulting curve
must lie near the 45◦ line. The asymptotic statistics of the KS
distribution can be used to construct confidence intervals for
the test. For instance, the 95% and 99% confidence intervals
are approximately given by ± 1.36√

J
and ± 1.63√

J
hulls around the

45◦ line, respectively.

C. The Autocorrelation Function Test for Independence

In order to check for the independence of the resulting
rescaled intervals zk, the following transformation is used:

vk = Φ−1(uk)

where Φ is the standard Normal CDF. If the true conditional
intensity was used to rescale the process, then vk’s would
be i.i.d. Gaussian and their uncorrelatedness would imply
independence. The Autocorrelation Function (ACF) of the
variables vk must then be close to the discrete delta function.
The 95% and 99% confidence intervals can be considered us-
ing the asymptotic statistics of the sample ACF, approximately
given by ± 1.96√

J
and ± 2.575√

J
, respectively.
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