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Abstract—We consider the problem of estimating the pa-
rameters of a linear autoregressive model with sub-Gaussian
innovations from a limited sequence of consecutive observations.
Assuming that the parameters are compressible, we analyze the
performance of the ℓ1-regularized least squares as well as a
greedy estimator of the parameters and characterize the sampling
trade-offs required for stable recovery in the non-asymptotic
regime. Our results extend those of compressed sensing for linear
models where the covariates are i.i.d. and independent of the
observation history to autoregressive processes with highly inter-
dependent covariates. We also derive sufficient conditionson the
sparsity level that guarantee the minimax optimality of the ℓ1-
regularized least squares estimate. Applying these techniques to
simulated data as well as real-world datasets from crude oil
prices and traffic speed data confirm our predicted theoretical
performance gains in terms of estimation accuracy and model
selection.

Index Terms—linear autoregressive processes, sparse estima-
tion, compressive sensing, sampling.

I. I NTRODUCTION

Autoregressive (AR) models are among the most funda-
mental tools in analyzing time series. Applications include
financial time series analysis [2] and traffic modeling [3]–[8].
Due to their well-known approximation property, these models
are commonly used to represent stationary processes in a para-
metric fashion and thereby preserve the underlying structure
of these processes [9]. In order to leverage the approximation
property of AR models, often times parameter sets of very
large order are required[10]. For instance, any autoregressive
moving average (ARMA) process can be represented by an
AR process of infinite order. Statistical inference using these
models is usually performed through fitting a long-order AR
model to the data, which can be viewed as a truncation
of the infinite-order representation [11]–[14]. In general, the
ubiquitous long-range dependencies in real-world time series,
such as financial data, results in AR model fits with large
orders [2].

In various applications of interest, the AR parameters fit
to the data exhibit sparsity, that is, only a small number of
the parameters are non-zero. Examples include autoregressive
communication channel models, quasi-oscillatory data tuned
around specific frequencies and financial time series [8], [15],
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[16]. The non-zero AR parameters in these models correspond
to significant time lags at which the underlying dynamics op-
erate. Traditional model selection procedures based on criteria
such as Final Prediction Error (FPE) [17], Akaike Information
Criterion (AIC) [18] and Bayesian Information Criterion (BIC)
[19] are not efficient in order selection of sparse AR processes,
as the ambient dimension of the parameters can be much
larger than the sparsity. Also, these criteria pertain to the
asymptotic regimes and their finite sample behavior is not well
understood.

In recent years, the theory of compressed (CS) has become
the standard framework for measuring and estimating sparse
statistical models [20]–[22]. The theoretical guaranteesof CS
imply that when the number of incoherent measurements are
roughly proportional to the sparsity level, then stable recovery
of these models is possible. A key underlying assumption in
most of the existing theoretical analyses of linear models is the
independence and identical distribution (i.i.d.) of the covari-
ates. Exceptions include measurement constructions basedon
correlated designs, and Toeplitz matrices where the designis
extrinsic, fixed in advance and is independent of the underlying
sparse signal [23], [24] Such assumptions do not hold for AR
processes, as the intrinsic history of the process plays therole
of the covariates. Hence the underlying interdependence in
the model hinders a straightforward application of existing CS
results to AR modeling.

In this paper, we address this issue by extending the analyses
of CS theory to the estimation of compressible AR processes,
and relaxing the assumptions of i.i.d. covariates. In particular,
we will consider an AR process with sparse parameters and
will analyze the performance of a LASSO-type estimator (cor-
responding toℓ1-regularized Least Squares (LS) estimation)
as well as a greedy solution. We will present theoretical
guarantees that extend those of CS theory and characterize
fundamental trade-offs between the number of measurements,
compressibility, and estimation error of AR processes in
the non-asymptotic regime. Our results reveal that when the
number of measurements scalesub-linearlywith the product
of the ambient dimension and the sparsity level, then stable
recovery of the underlying models is possible, even though the
covariates solely depend on the history of the process. Thisis
a significant improvement over existing results for stable AR
estimation which require the number of measurements to scale
quadratically with the ambient dimension [25]. We further
establish sufficient conditions on the sparsity level whichresult
in the minimax optimality of theℓ1-regularized LS estimator.
Finally, we provide simulation results as well as application to
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oil price and traffic data which reveal that the sparse estimates
significantly outperform traditional techniques such as the
Yule-Walker based estimators [26].

The rest of the paper is organized as follows. In Section
II, we will introduce the notations and problem formulation.
In section III, we will state the main problem of interest
and the estimation methods for the parameters of an AR
process. We will also present the main theoretical results of
this paper on robust estimation of AR parameters. In section
III-D we establish the minimax optimality of theℓ1-regularized
LS estimator. Section IV includes our simulation results on
simulated data as well as the real-world financial and traffic
data.

II. N OTATIONS AND PROBLEM FORMULATION

Throughout the paper we will use the following notations.
We will use the notationxj

i to denote the vector[xi, · · · , xj ]
T .

We will denote the estimated values bŷ(.) and the biased
estimates with the superscript(.)b. Throughout the proofs,
ci’s express absolute constant which may change from line to
line where there is no ambiguity. Bycη we mean an absolute
constant which only depends on a positive constantη.

Consider an AR(p) process defined by

xk = θ1xk−1+θ2xk−2+ · · ·+θpxk−p+wk = θ
Txk−1

k−p+wk,
(1)

where {wk}∞k=−∞ is an i.i.d sub-Gaussian innovation se-
quence with zero mean and varianceσ2

w. This process can
be considered as the output of an LTI system with transfer
function

H(z) =
σ2
w

1−
∑p

ℓ=1 θℓz
−ℓ

. (2)

Throughout the paper we will assume‖θ‖1≤ 1− η < 1 to
enforce the stability of the filter. We will refer to this assump-
tion asthe sufficient stability assumption, since an AR process
with poles within the unit circle does not necessarily satisfy
‖θ‖1< 1. However, beyond second-order AR processes, it
is not straightforward to state the stability of the processin
terms of its parameters in a closed algebraic form, which
in turn makes both the analysis and optimization procedures
intractable. The AR(p) process given by{xk}∞k=−∞ in (1) is
stationary in the strict sense. Also by (2) the power spectral
density of the process equals

S(ω) =
σ2
w

|1−∑p
ℓ=1 θℓe

−jℓω|2 . (3)

The sufficient stability assumption implies boundedness of
the spectral spread of the process defined as

ρ = sup
ω

S(ω)
/
inf
ω

S(ω).

We will discuss how this assumption can be further relaxed in
Appendix A-B. The spectral spread of stationary processes in
general is a measure of how quickly the process reaches its
ergodic state [25]. An important property that we will use later
in this paper is that the spectral spread is an upper bound on
the eigenvalue spread of the covariance matrix of the process
of arbitrary size [27].

We will also assume that the parameter vectorθ is com-
pressible (to be defined more precisely later), and can be well
approximated by ans-sparse vector wheres ≪ p. We observe
n consecutive snapshots of lengthp (a total of n + p − 1
samples) from this process given by{xk}nk=−p+1 and aim to
estimateθ by exploiting its sparsity; to this end, we aim at
addressing the following questions:

• Are the conventional LASSO-type and greedy techniques
suitable for estimatingθ?

• What are the sufficient conditions onn in terms ofp and
s, to guarantee stable recovery?

• Given these sufficient conditions, how do these estimators
perform compared to conventional AR estimation tech-
niques?

Traditionally, the Yule-Walker (YW) equations or least
squares formulations are used to fit AR models. Since these
methods do not utilize the sparse structure of the parameters,
they usually requiren ≫ p samples in order to achieve
satisfactory performance. The YW equations can be expressed
as

Rθ = r−1
−p, r0 = θ

T r−1
−p + σ2

w, (4)

where R := Rp×p = E[xp
1x

pT
1 ] is the p × p covariance

matrix of the process andrk = E[xixi+k] is the autocor-
relation of the process at lagk. The covariance matrixR
and autocorrelation vectorr−1

−p are typically replaced by their
sample counterparts. Estimation of the AR(p) parameters from
the YW equations can be efficiently carried out using the
Burg’s method [28]. Other estimation techniques include LS
regression and maximum likelihood (ML) estimation. In this
paper, we will consider the Burg’s method and LS solutions
as comparison benchmarks. Whenn is comparable top, these
two methods are known to exhibit substantial performance
differences [29].

When fitted to the real-world data, the parameter vectorθ

usually exhibits a degree of sparsity. That is, only certainlags
in the history have a significant contribution in determining
the statistics of the process. These lags can be thought of
as the intrinsic delays in the underlying dynamics. To be
more precise, for a sparsity levels < p, we denote by
S ⊂ {1, 2, · · · , p} the support of thes largest elements of
θ in absolute value, and byθS the bests-term approximation
to θ. We also define

σs(θ) := ‖θ − θS‖1 (5)

and
ςs(θ) := ‖θ − θS‖2 (6)

which capture the compressibility of the parameter vector
θ in the ℓ1 and ℓ2 sense, respectively. Note that by def-
inition ςs(θ) ≤ σs(θ). For a fixed ξ ∈ (0, 1), we say
that θ is (s, ξ)-compressibleif σs(θ) = O(s1−

1
ξ ) [30]

and (s, ξ, 2)-compressibleif ςs(θ) = O(s1−
1
ξ ). Note that

(s, ξ, 2)-compressibility is a weaker condition than(s, ξ)-
compressibilityand whenξ = 0, the parameter vectorθ is
exactlys-sparse.

Finally, in this paper, we are concerned with the compressed
sensing regime wheren ≪ p, i.e., the observed data has
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a much smaller length than the ambient dimension of the
parameter vector. The main estimation problem of this paper
can be summarized as follows:given observationsxn

−p+1 from
an AR process with sub-Gaussian innovations and bounded
spectral spread, the goal is to estimate the unknownp-
dimensional(s, ξ, 2)-compressible AR parameter vectorθ in a
stable fashion (where the estimation error is controlled) when
n ≪ p.

III. T HEORETICAL RESULTS

In this section, we will describe the estimation procedures
and present the main theoretical results of this paper.

A. ℓ1-regularized least squares estimation

Given the sequence of observationsxn
−p+1 and an estimate

θ̂, the normalized estimation error can be expressed as:

L
(
θ̂

)
:=

1

n

∥∥∥xn
1 −X θ̂

∥∥∥
2

2
, (7)

where

X =




xn−1 xn−2 · · · xn−p

xn−2 xn−3 · · · xn−p−1

...
...

. ..
...

x0 x−1 · · · x−p+1


 . (8)

Note that the matrix of covariatesX is Toeplitz with highly
interdependent elements. The LS solution is thus given by:

θ̂LS = argmin
θ∈Θ

L(θ), (9)

where
Θ := {θ ∈ R

p| ‖θ‖1< 1− η}
is the convex feasible region for which the stability of the
process is guaranteed. In the regime of interest whenn ≪ p,
the LS estimator is ill-posed and is typically regularized with
a smooth norm. In order to capture the compressibility of the
parameters, we consider theℓ1-regularized LS estimator:

θ̂ℓ1 := argmin
θ∈Θ

L(θ) + γn‖θ‖1, (10)

where γn > 0 is a regularization parameter. It is easy to
verify that the objective function and constraints in Eq. (10)
are convex inθ and hencêθℓ1 can be obtained using standard
numerical solvers. Note that the solution to (10) might not be
unique. However, we will provide error bounds that hold for
all possible solutions of (10), with high probability.

Consistency of the estimator given by (9) was shown in
[2] when n → ∞ for Gaussian innovations. In the case of
Gaussian innovations the LS estimates correspond to condi-
tional ML estimation and are asymptotically unbiased under
mild conditions, and withp fixed, the solution converges to
the true parameter vector asn → ∞. However, whenp is
allowed to scale withn, the convergence rate is not known. For
fixed p, the estimation error is of the orderO(p/n) in general
[24]. This makes the analysis of LS estimators, and in general
regularized M-estimators, very challenging [31]. Nevertheless,
such an analysis has significant practical implications, asit will

reveal sufficient conditions onn with respect top as well as
a criterion to chooseγn, which result in stable estimation of
θ. Throughout our analysis, we fix the ambient dimensionp
and aim at deriving sufficient conditions onn ≪ p resulting
in stable estimation. In many applications of interest, thedata
correlations are exponentially decaying and negligible beyond
a certain lag, and hence for large enoughp, autoregressive
models fit the data very well in the prediction error sense.

Recall that, the Yule-Walker solution is given by

θ̂yw := argmin
θ∈Θ

J(θ) = R̂−1r̂−1
−p, (11)

where
J(θ) := ‖R̂θ − r̂−1

−p‖2.

We further consider two other sparse estimators forθ by pe-
nalizing the Yule-Walker equations. Theℓ1-regularized Yule-
Walker estimator is defined as:

θ̂yw,ℓ2,1 := argmin
θ∈Θ

J(θ) + γn‖θ‖1, (12)

whereγn > 0 is a regularization parameter. Similarly, using
the robust statistics instead of the Gaussian statistics, the
estimation error can be re-defined as:

J1(θ) := ‖R̂θ − r̂−1
−p‖1,

we define theℓ1-regularized estimates as

θ̂yw,ℓ1,1 := argmin
θ∈Θ

J1(θ) + γn‖θ‖1. (13)

B. Greedy estimation

Although there exist fast solvers for the convex problems
of the type given by (10), (12) and (13), these algorithms
are polynomial time inn and p, and may not scale well
with the dimension of data. This motivates us to consider
greedy solutions for the estimation ofθ. In particular, we
will consider and study the performance of a generalized
Orthogonal Matching Pursuit (OMP) algorithm [32], [33]. A
flowchart of this algorithm is given in Table I for completeness.
At each iteration, a new component ofθ for which the
gradient of the error metricf(θ) is the largest in absolute value
is chosen and added to the current support. The algorithm
proceeds for a total ofs⋆ = O(s log s) steps, resulting in an

Input: f(θ), s⋆

Output: θ̂OMP = θ̂
(s⋆)
OMP

Initialization:
{ Start with the index setS(0) = ∅

and the initial estimatêθ(0)
OMP = 0

for k = 1, 2, · · · , s⋆

j = argmax
i

∣∣∣
(
∇f

(
θ̂
(k−1)
OMP

))

i

∣∣∣

S(k) = S(k−1) ∪ {j}

θ̂
(k)
OMP = argmin

supp(x)⊂S(k)

f(θ)

end

TABLE I: Generalized Orthogonal Matching Pursuit (OMP)
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estimate withs⋆ components. When the error metricL(θ)
is chosen, the generalized OMP corresponds to the original
OMP algorithm. For the choice of the YW error metricJ(θ),
we denote the resulting greedy algorithm byywOMP.

C. Estimation performance guarantees

The main theoretical result regarding the estimation per-
formance of theℓ1-regularized LS estimator is given by the
following theorem:

Theorem 1. If σs(θ) = O(
√
s), there exist positive constants

d1, d2, d3 and d4 such that forn > d1sp
2/3 and a choice of

regularization parameterγn = d2

√
log p
n , any solutionθ̂ℓ1 to

(10) satisfies the bound

∥∥∥θ̂ℓ1 − θ

∥∥∥
2
≤ d3

√
s log p

n
+
√
d3σs(θ)

4

√
log p

n
, (14)

with probability greater than1 − O( 1
nd4

). The constants are
only functions ofσ2

w and η and are explicitly given in the
proof.

Similarly, the following theorem characterizes the estima-
tion performance bounds for the OMP algorithm:

Theorem 2. If θ is (s, ξ, 2)-compressible for someξ < 1/2,
there exist positive constantsd′1, d

′
2, d

′
3 and d′4 such that for

n > d′1sp
2/3 log s, the OMP estimate satisfies the bound

∥∥∥θ̂OMP − θ

∥∥∥
2
≤ d′2

√
s log s log p

n
+ d′3

log s

s
1
ξ−2

(15)

after s⋆ = s
η2 log

5s
η2 iterations with probability greater than

1 − O
(

1

nd′4

)
. The constants are only functions ofσ2

w and η

and are explicitly given in the proof.

The results of Theorems 1 and 2 suggest that under suitable
compressibility assumptions on the AR parameters, one can
estimate the parameters reliably using theℓ1-regularized LS
and OMP estimators with much fewer measurements com-
pared to those required by the Yule-Walker/LS based methods.
To illustrate the significance of these results further, several
remarks are in order:
Remark 1. Comparing the sufficient conditionn = O(sp2/3)
of Theorem 1 with those of [20]–[22] for linear models
with i.i.d. measurement matrices given byn = O(s log p)
reveals that a loss of orderO(p2/3) is incurred, although
both conditions requiren ≪ p. However, this loss seems
to be natural as it stems from two major differences of
our setting as compared to traditional CS: first, the sample
space characterizing the covariatesxn

−p+1 is (n + p − 1)-
dimensional, whereas in traditional CS the sample space of
the measurement matrix isnp-dimensional. Second, each row
of the measurement matrixX highly depends on the entire
observation sequencexn

1 , whereas in traditional CS, each row
of the measurement matrix is only related to the corresponding
measurement. Hence, the aforementioned loss can be viewed
as the price of self-averaging of the process accounting for
the low-dimensional nature of the covariate sample space and
the high inter-dependence of the covariates to the observation

sequence. The dominant loss ofO(p2/3) does not seem to be
significantly improvable, as AR processes are known for slow
convergence to their ergodic state.
Remark 2. On the positive side, compared to existing guar-
antees for LS estimation techniques for AR processes which
typically requireO(p2) measurements [25], our result predicts
a significant saving of the orderp4/3s−1. It can also be
shown that the estimation error for the LS method in general
scales as

√
p/n [24] which is not desirable whenn ≪ p.

Our result, however, guarantees a much smaller error rate
of the order

√
s log p/n. Also, the sufficiency conditions

of Theorem 2 require high compressibility of the parameter
vector θ (ξ < 1/2), whereas Theorem 1 does not impose
any extra restrictions onξ ∈ (0, 1). Intuitively speaking, these
two comparisons reveal the trade-off between computational
complexity and measurement/compressibility requirements for
convex optimization vs. greedy techniques, which are well-
known for linear models [34].
Remark 3. The conditionσs(θ) = O(

√
s) in Theorem 1 is not

restricting for the processes of interest in this paper. This is
due to the fact that the boundedness assumption on the spectral
spread implies an exponential decay of the parameters (See
Lemma 1 of [25]). Finally, the constantsd1, d′1 are increasing
with respect to the spectral spread of the processρ. Intuitively
speaking, the closer the roots of the filter given by (2) get tothe
unit circle (corresponding to largerρ and smallerη), the slower
the convergence of the process will be to its ergodic state, and
hence more measurements are required. A similar dependence
to the spectral spread has appeared in the results of [25] for
ℓ2-regularized least squares estimation of AR processes.
Remark 4. The main ingredient in the proofs of Theorems 1
and 2 is to establish the restricted eigenvalue (RE) condition
introduced in [35] for the covariate matrixX . We will show
that if the bounded spectral spread condition holds, then
with n = O(sp2/3) the sample covariance matrix is sharply
concentrated around the true covariance matrix and hence the
RE condition can be guaranteed. All constants appearing in
Theorems 1 and 2 are explicitly given in Appendix A-B. As
a typical numerical example, forη = 0.5 andσ2

w = 0.01, the
constants of Theorem 1 can be chosen asd1 ≈ 1000, d2 ≈
0.5 − 1, d3 ≈ 10, and d4 ≈ 4. The full proofs are given in
Appendix A-B.

D. Minimax optimality

In this section, we establish the minimax optimality of
the ℓ1-regularized LS estimator for AR processes with sparse
parameters. To this end, we will focus on the classH of
stationary processes which admit an AR(p) representation
with s-sparse parameterθ such that‖θ‖1≤ 1 − η < 1.
The theoretical results of this section are inspired by the
enlightening results of [25] on non-asymptotic order selection
via ℓ2-regularized LS estimation in the absence of sparsity,
and extend them by studying theℓ1-regularized LS estimator
of (10).

We define the maximalestimationrisk overH to be

Rest(θ̂) := sup
H

(
E

[
‖θ̂ − θ‖22

])1/2
. (16)
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The minimax estimator is the one minimizing the maximal
estimation risk, i.e.,

θ̂minimax := argmin
θ∈Θ

Rest(θ̂). (17)

Minimax estimatorθ̂minimax, in general, cannot be constructed
explicitly [25], and the common practice in non-parametric
estimation is to construct an estimatorθ̂ which isorder optimal
as compared to the minimax estimator:

Rest(θ̂) ≤ LRest(θ̂minimax). (18)

with L ≥ 1 being a constant. One can also define the
minimax predictionrisk by the maximal prediction error over
all possible realizations of the process:

R2
pre(θ̂) := sup

H
E

[(
xk − θ̂

′xk−1
k−p

)2]
. (19)

In [25], it is shown that anℓ2-regularized LS estimator with
an order p⋆ = O(log n) is minimax optimal. This order
pertains to the denoising regime wheren ≫ p. Hence, in
order to capture long order lags of the process, one requires
a sample size exponentially large inp, which may make the
estimation problem computationally infeasible. For instance,
consider a2-sparse parameter with onlyθ1 andθp being non-
zero. Then, in order to achieve minimax optimality,n = O(2p)
measurements are required. In contrast, in the compressive
regime wheres, n ≪ p, the goal, instead of selectingp, is to
find conditions on the sparsity levels, so that for a givenn
and large enoughp, the ℓ1-regularized estimator is minimax
optimal without explicit knowledge of the value ofs (See for
example, [36]).

In the following proposition, we establish the minimax
optimality of the ℓ1-regularized estimator over the class of
sparse AR processes withθ ∈ Θ:

Proposition 1. Let xn
1 be samples of an AR process with

s-sparse parameters satisfying‖θ‖1≤ 1 − η and s ≤
min

{
1−η√
8πη

√
n

log p , n
d1p2/3

}
. Then, we have:

Rest(θ̂ℓ1) ≤ LRest(θ̂minimax).

whereL is a constant and is only a function ofη andσ2
w and

is explicitly given in the proof.

Remark 5. Proposition 1 implies thatℓ1-regularized LS is
minimax optimal in estimating thes-sparse parameter vector
θ, for small enoughs. The proof of the Proposition 1 is given
in Appendix A-D. This result can be extended to compressible
θ in a natural way with a bit more work, but we only present
the proof for the case ofs-sparseθ for brevity. We also state
the following proposition on the prediction performance ofthe
ℓ1-regularized LS estimator:

Proposition 2. Letxn
−p+1 be samples of an AR process withs-

sparse parameters and Gaussian innovations, then there exists
a positive constantd5 such that for large enoughn, p and s
satisfyingn > d1sp

2/3, we have:

R2
pre(θ̂ℓ1) ≤ d5

s log p

n
+ σ2

w. (20)

It can be readily observed that forn ≫ s the prediction
error variance is very close to the variance of the innovations.
The proof is similar to Theorem 3 of [25] and is skipped in
this paper for brevity.

IV. A PPLICATION TO SIMULATED AND REAL DATA

In this section, we study and compare the performance of
Yule-Walker based estimation methods with those of theℓ1-
regularized and greedy estimators given in section III. These
methods are applied to simulated data as well as real data from
crude oil price and traffic speed.

A. Simulation studies

In order to simulate an AR process, we filtered a Gaussian
white noise process using an IIR filter with sparse parameters.
Figure 1 shows a typical sample path of the simulated AR
process used in our analysis. For the parameter vectorθ,
we chose a length ofp = 300, and employedn = 1500
generated samples of the corresponding process for estimation.
The parameter vectorθ is of sparsity levels = 3 and
η = 1 − ‖θ‖1= 0.5. A value of γn = 0.1 is used, which
is slightly tuned around the theoretical estimate given by
Theorem 1. The order of the process is assumed to be known.
We compare the performance of seven estimators: 1)θ̂LS using
LS, 2) θ̂yw using the Yule-Walker equations, 3)̂θℓ1 from ℓ1-
regularized LS, 4)θ̂OMP using OMP, 5)θ̂yw,ℓ2,1 using Eq.
(12), 6) θ̂yw,ℓ1,1 using Eq. (13), and 7)̂θywOMP using the cost
function J(θ) in the generalized OMP. Figure 2 shows the
estimated parameter vectors using these algorithms. It canbe
visually observed thatℓ1-regularized and greedy estimators
(shown in purple) significantly outperform the Yule-Walker-
based estimates (shown in orange).

In order to quantify the latter observation precisely, we
repeated the same experiment forp = 300, s = 3 and
10 ≤ n ≤ 105. A comparison of the normalized MSE of
the estimators vs.n is shown in Figure 3. As it can be
inferred from Figure 3, in the region wheren is comparable
to p (shaded in light purple), the sparse estimators have
a systematic performance gain over the Yule-Walker based
estimates, with theℓ1-regularized LS and ywOMP estimates
outperforming the rest.

The MSE comparison in Figure 3 requires one to know
the true parameters. In practice, the true parameters are not
available for comparison purposes. In order to quantify the
performance gain of these methods, we use statistical tests
to assess the goodness-of-fit of the estimates. The common
chi-square type statistical tests, such as the F-test, are useful
when the hypothesized distribution to be tested against is
discrete or categorical. For our problem setup with sub-
Gaussian innovations, we will use a number of statistical

-2

0

2

0 40 80 120 160 200

Fig. 1: Samples of the simulated AR process.



6

-0.2

0

0.2

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

0.2

-0.1

0

0.1

50 100 150 200 250 300
-0.2

0

0.2

50 100 150 200 250 300
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(These results are best viewed in the color version).
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Fig. 3: MSE comparison of the estimators vs. the number of
measurementsn.

tests appropriate for AR processes, namely, the Kolmogorov-
Smirnov (KS) test, the Cramér-von Mises (CvM) criterion, the
spectral Cramér-von Mises (SCvM) test and the Anderson-
Darling (AD) [37]–[39]. A summary of these tests is given
in Appendix B. Table II summarizes the test statistics for
different estimation methods. These tests are based on the
known results on limiting distributions of error residuals. As
noted from Table II, our simulations suggest that the OMP
estimate achieves the best test statistics for the CvM, AD and
KS tests, whereas theℓ1-regularized estimate achieves the best
SCvM statistic.

B. Application to the analysis of crude oil prices

In this and the following subsection, we consider applica-
tions with real-world data. As for the first application, we
apply the sparse AR estimation techniques to analyze the crude
oil price of the Cushing, OK WTI Spot Price FOB dataset

TABLE II: Goodness-of-fit tests for the simulated data
❳
❳
❳
❳
❳
❳
❳❳

Estimate
Test

CvM AD KS SCvM

θ 0.31 1.54 0.031 0.009
θ̂LS 0.68 5.12 0.037 0.017
θ̂yw 0.65 4.87 0.034 0.025
θ̂ℓ1 0.34 1.72 0.030 0.009
θ̂OMP 0.29 1.45 0.028 0.009
θ̂yw,ℓ2,1 0.35 1.80 0.032 0.009

θ̂yw,ℓ1,1 0.42 2.33 0.040 0.008

θ̂ywOMP 0.29 1.46 0.030 0.009

[40]. This dataset consists of 7429 daily values of oil prices in
dollars per barrel. In order to avoid outliers, usually the dataset
is filtered with a moving average filter of high order. We have
skipped this procedure by visual inspection of the data and
selectingn = 4000 samples free of outliers. Such financial
data sets are known for their non-stationarity and long order
history dependence. In order to remove the deterministic trends
in the data, one-step or two-step time differencing is typically
used. We refer to [8] for a full discussion of this detrending
method. We have used a first-order time differencing which
resulted in a sufficient detrending of the data. Figure 4 shows
the data used in our analysis. We have chosenp = 150 by
inspection. The histogram of first-order differences as well the
estimates are shown in Figure 5.
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Fig. 4: A sample segment of the Cushing, OK WTI Spot Price
FOB data.

A visual inspection of the estimates in Figure 5 shows
that theℓ1-regularized LS (̂θℓ1) and OMP (̂θOMP) estimates
consistently select specific time lags in the AR parameters,
whereas the Yule-Walker and LS estimates seemingly overfit
the data by populating the entire parameter space. In order
to perform goodness-of-fit tests, we use an even/odd two-
fold cross-validation. Table III shows the corresponding test
statistics, which reveal that indeed theℓ1-regularized and OMP
estimates outperform the traditional estimation techniques.

TABLE III: Goodness-of-fit tests for the crude oil price data
❳
❳
❳
❳
❳
❳
❳❳

Estimate
Test

CvM AD KS SCvM

θ̂LS 0.88 5.55 0.055 0.046
θ̂yw 0.58 3.60 0.043 0.037
θ̂ℓ1 0.27 1.33 0.031 0.020
θ̂OMP 0.22 1.18 0.025 0.022
θ̂yw,ℓ2,1 0.28 1.40 0.027 0.021

θ̂yw,ℓ1,1 0.24 1.26 0.027 0.022

θ̂ywOMP 0.23 1.18 0.026 0.022
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Fig. 5: Estimates ofθ for the second-order differences of the
oil price data.

C. Application to the analysis of traffic data

Our second real data application concerns traffic speed data.
The data used in our simulations is the INRIXR© speed data
for I-495 Maryland inner loop freeway (clockwise) between
US-1/Baltimore Ave/Exit 25 and Greenbelt Metro Dr/Exit 24
from 1 Jul, 2015 to 31 Oct, 2015 [41], [42]. The reference
speed of 65 mph is reported. Given the huge length of the
data and its high variability, the following pre-processing was
made on the original data:

1) The data was downsampled by a factor of4 and averaged
by the hour in order to reduce its daily variability, that
is each lag corresponds to one hour.

2) The logarithm of speed was used for analysis and the
mean was subtracted. This reduces the high variability
of speed due to rush hours and lower traffic during
weekends and holidays.
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Fig. 6: A sample of the speed and travel time data for I-495.

Figure 6 shows a typical average weekly speed and travel
time in this dataset and the corresponding 25-75-th percentiles.
As can be seen the data shows high variability around the
rush hours of 8am and 4pm. In our analysis, we used the first
half of the data (n = 1500) for fitting, from which the AR
parameters and the distribution and variance of the innovations
were estimated. The statistical tests were designed based on
the estimated distributions, and the statistics were computed
accordingly using the second half of the data. We selected an
order ofp = 200 by inspection and noting that the data seems
to have a periodicity of order170 samples.
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Fig. 7: Estimates ofθ for the traffic speed data.

Figure 7 shows part of the data used in our analysis as well
as the estimated parameters. Theℓ1-regularized LS (̂θℓ1) and
OMP (θ̂OMP) are consistent in selecting the same components
of θ. These estimators pick up two major lags around whichθ

has its largest components. The first lag corresponds to about
24 hours which is mainly due to the rush hour periodicity
on a daily basis. The second lag is around150 − 170 hours
which corresponds to weekly changes in the speed due to
lower traffic over the weekend. In contrast, the Yule-Walker
and LS estimates do not recover these significant time lags.

TABLE IV: Goodness-of-fit tests for the traffic speed data
❳
❳
❳
❳
❳
❳
❳❳

Estimate
Test

CvM AD KS SCvM

θ̂yw 0.012 0.066 0.220 0.05
θ̂ℓ1 1.4×10

−7 2.1×10
−6 6.7×10

−4 0.25
θ̂OMP 0.017 0.082 0.220 1.49
θ̂ywOMP 0.025 0.122 0.270 0.14

Statistical tests for a selected subset of the estimators are
shown in Table IV. Interestingly, theℓ1-regularized LS esti-
mator significantly outperforms the other estimators in three
of the tests. The Yule-Walker estimator, however, achievesthe
best SCvM test statistic.
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V. CONCLUSIONS

In this paper, we have investigated sufficient sampling
requirements for stable estimation of AR models in the non-
asymptotic regime using theℓ1-regularized LS and greedy
estimation (OMP) techniques. We have further established
the minimax optimality of theℓ1-regularized LS estimator.
Compared to the existing literature, our results provide several
major contributions. First, to the best of our knowledge,
our sufficient sampling bounds are the first of this kind in
assessing the estimation performance of sparse AR models
in the non-asymptotic regime. Althoughℓ1-regularized LS
and OMP are widely used in practice for AR estimation, the
choices of the regularization parameter and the number of
greedy iterations, respectively, are often ad-hoc. In contrast,
our theoretical results prescribe analytical choices of the
aforementioned parameters. In particular, our results suggest
an improvement of orderO(p4/3s−1) over those of [25]
which requiresn ∼ O(p2) for stable AR estimation. Second,
our analysis relaxes the widely-assumed hypotheses of i.i.d.
covariates, which is clearly violated for AR estimation. To
this end, our results extend those of [24] in establishing the
RIP for i.i.d. Toeplitz matrices and [43] in establishing the
RE condition for correlated Gaussian designs, to the setting or
AR estimation where the both the observations and covariates
are obtained by the same stochastic process. Moreover, in
the linear sparsity regime wheres scales linearly withp, our
results suggest an improvement of orderO(p1/3) to those of
[24]. Third, we established the minimax optimality of theℓ1-
regularized LS estimator for compressible AR parameters.

We further verified the validity of our theoretical results
through simulation studies as well as application to real
financial and traffic data. These results show that the sparse
estimation methods significantly outperform the widely-used
Yule-Walker based estimators in fitting AR models to the data.
Although we did not theoretically analyze the performance of
sparse Yule-Walker based estimators, they seem to perform on
par with theℓ1-regularized LS and OMP estimators based on
our numerical studies. Finally, our results provide a striking
connection to our recent work [44], [45] in estimating sparse
self-exciting discrete point process models. These models
regress an observed binary spike train with respect to its
history via Bernoulli or Poisson statistics, and are often used
in describing spontaneous activity of sensory neurons. Our
results have shown that in order to estimate a sparse history-
dependence parameter vector of lengthp and sparsitys in a
stable fashion, a spike train of lengthn = O(s2/3p2/3 log p) is
required. This leads us to conjecture that our results will hold
for a larger class of autoregressive processes, beyond those
characterized by linear models.

APPENDIX A
PROOFS OFTHEOREMS1 AND 2

A. The Restricted Strong Convexity of the matrix of covariates

The first element of the proofs of both Theorems 1 and
2 is to establish the Restricted Strong Convexity (RSC) for
the matrixX of covariates formed from the observed data.
First, we investigate the closely related Restricted Eigenvalue

(RE) condition. Let[λmin(s), λmax(s)] be the smallest interval
containing the singular values of1n (X

T
S XS), whereXS is a

sub-matrixX over an index setS of sizes.

Definition 1 (Restricted Eigenvalue Condition). A matrix X
is said to satisfy the RE condition of orders if λmin(s) > 0.

Although the RE condition only restrictsλmin(s), in the
following analysis we also keep track ofλmax(s), which
appears in some of the bounds. Establishing the RSC forX
proceeds in a sequence of lemmas (Lemmas 1–5 culminating
in Lemma 6). We first show that the RE condition holds for
the true covariance of an AR process:

Lemma 1 (from [46]). LetR ∈ R
k×k be thek×k covariance

matrix of a stationary process with power spectral density
S(ω), and denote its maximum and minimum eigenvalues by
φmax(k) andφmin(k), respectively. Then,φmax(k) is increas-
ing in k, φmin(k) is decreasing ink, and we have

φmin(k) ↓ inf
ω

S(ω), and φmax(k) ↑ sup
ω

S(ω). (21)

This result gives us the following corollary:

Corollary 1 (Singular Value Spread ofR). Under the suffi-
cient stability assumption, the singular values of the covari-
anceR of an AR process lie in the interval

[
σ2
w

8π ,
σ2
w

2πη2

]
.

Proof: For an AR(p) process

S(ω) =
1

2π

σ2
w

|1−∑p
ℓ=1 θℓe

−jℓω |2 .

Combining‖θ‖1≤ 1−η < 1 with Lemma 1 proves the claim.

Note that by Lemma 1, the result of Corollary 1 not only
holds for AR processes, but also forany stationary process
satisfyinginfω S(ω) > 0 and supω S(ω) < ∞, i.e., a process
with finite spectral spread.

We next establish conditions for the RE condition to hold
for the empirical covariancêR:

Lemma 2. If the singular values ofR lie in the interval
[λmin, λmax], thenX satisfies the RE condition of orders⋆ with
parametersλmin(s⋆) = λmin− ts⋆ andλmax(s⋆) = λmax+ ts⋆,
wheret = maxi,j |R̂ij −Rij |.

Proof: Let R̂ = 1
n (X

TX). For everys⋆-sparse vectorθ
we have

θ
T R̂θ ≥ θ

TRθ − t‖θ‖21≥ (λmin − ts⋆)‖θ‖22,

θ
T R̂θ ≤ θ

TRθ + t‖θ‖21≤ (λmax + ts⋆)‖θ‖22,

which proves the claim.
We will next show thatt can be suitably controlled with high

probability. Before doing so, we state a key result of Rudzkis
[47] regarding the concentration of second-order empirical
sums from stationary processes:

Lemma 3. Let xn
−p+1 be samples of a stationary process

which satisfies

xk =

∞∑

j=−∞
bj−kwj , (22)
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wherewk ’s are i.i.d random variables with

|E(|wj |k)|≤ (c̃σw)
kk! , k = 2, 3, · · · , (23)

for some constant̃c and
∞∑

j=−∞
|bj|< ∞. (24)

Then, the biased sample autocorrelation given by

r̂bk =
1

n+ k

n+k∑

i,j=1,j−i=k

xixj

satisfies

P(|r̂bk−rbk|> t) ≤ c1(n+k) exp

(
− c2
σw

t2(n+ k)

c3σ3
w + t3/2

√
n+ k

)
,

(25)
for positive absolute constantsc1, c2 and c3 which are
independent of the dimensions of the problem and are only
functions ofc̃.

Proof: The lemma is a special case of Theorem 4 under
Condition 2 of Remark 3 in [47].

Using the result of Lemma 3, we can controlt and establish
the RE condition forR̂ as follows:

Lemma 4. Let m be a positive integer. Then,X satisfies the
RE condition of order(m+ 1)s with a constantλmin/2 with
probability at least

1− c1p
2(n+ p) exp


−

c3
√

n
s

1 + c4
n+p

(n
s )

3/2


 , (26)

wherec1 is the same as in Lemma 3,c3 = c2
σw

√
λmin

2(m+1) and

c4 =
c3σ

3
w

(

λmin
2(m+1)

)3/2 .

Proof: First, note that for the given AR process, condition
(22) is verified by the Wold decomposition of the process,
condition (23) results from the sub-Gaussian assumption on
the innovations, and condition (24) results from the stability
of the process. Noting that

R̂i,i+k =
1

n

n∑

i=1

xixi+k =
1

n

n+k∑

i,j=1,j−i=k

xixj =
n+ k

n
r̂bk,

(27)
for i = 1, · · · , n andk = 0, · · · , p− 1, Eq. (25) implies:

P

(
|R̂i,i+k −Ri,i+k|> τ

)
≤ c1(n+ k) exp

(
− c2

√
τn

c3σ4
w(n+k)

τ3/2n3/2 + σw

)
.

(28)
By the union bound andk ≤ p, we get:

P

(
max
i,j

|R̂ij −Rij |> τ

)
≤ c1p

2(n+ p) exp

(
− c2

√
τn

c3σ4
w(n+p)

τ3/2n3/2 + σw

)
.

(29)

Choosingτ = λmin

2(m+1)s and invoking the result of Lemma 2
establishes the result of the lemma.

We next define the closely related notion of the Restricted
Strong Convexity (RSC):

Definition 2 (Restricted Strong Convexity [31]). Let

V := {h ∈ R
p|‖hSc‖1≤ 3‖hS‖1+4σs(θ)}. (30)

Then,X is said to satisfy the RSC condition of orders if there
exists a positiveκ > 0 such that

1

n
h
TXTXh =

1

n
‖Xh‖22≥ κ‖h‖22, ∀h ∈ V. (31)

The RSC condition can be deduced from the RE condition
according to the following result:

Lemma 5 (lemma 4.1 of [35]). If X satisfies the RE condition
of order s⋆ = (m+1)s with a constantλmin((m+1)s), then
the RSC condition of orders holds with

κ = λmin((m+ 1)s)

(
1− 3

√
λmax(ms)

mλmin ((m+ 1)s)

)2

. (32)

We can now establish the RSC condition of orders for X :

Lemma 6. The matrix of covariatesX satisfies the RSC
condition of orders with a constantκ =

σ2
w

16π with probability
at least

1− c1p
2(n+ p) exp


−

cη
√

n
s

1 + c′η
n+p

(n
s )

3/2


 , (33)

wherecη = c2η√
16π(72+η2)

and c′η = c3(16π(72+η2))3/2

η3 .

Proof: Choosing m = ⌈ 72
η2 ⌉, and using Lemmas 2,

reflem:re2, and 5 establishes the result.
We are now ready prove Theorems 1 and 2.

B. Proof of Theorem 1

We first establish the so-called vase condition for the error
vectorh = θ̂ℓ1 − θ:

Lemma 7. For a choice of the regularization parameterγn ≥
‖∇L(θ)‖∞= 2

n‖XT (xn
1 −Xθ) ‖∞, the optimal errorh =

θ̂ℓ1 − θ belongs to the vase

V := {h ∈ R
p|‖hSc‖1≤ 3‖hS‖1+4σs(θ)}. (34)

Proof: Using several instances of the triangle inequality
we have:

0 ≥ 1

n

(
‖xn

1 −X(θ + h)‖22−‖xn
1 −Xθ‖22

)
+

γn (‖θ + h‖1−‖θ‖1)

≥ − 1

n
‖XT (xn

1 −Xθ) ‖∞‖h‖1+
γn (‖θS + hSc + hS + θSc‖1−‖θ‖1)

≥ −γn
2
(σs(h) + ‖hS‖1)+

γn (‖θS + hSc‖1−‖hS + θSc‖1−‖θ‖1)
= −γn

2
(σs(h) + ‖hS‖1)+

γn(‖θS‖1+σs(h)− ‖hS‖1−σs(θ)− σs(θ)− ‖θS‖1)
=

γn
2
(σs(h)− 3‖hS‖1−4σs(θ)).
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The following result of Negahban et al. [31] allows us to
characterize the desired error bound:

Lemma 8 (Theorem 1 of [31]). If X satisfies the RSC condi-
tion of orders with a constantκ > 0 and γn ≥ ‖∇L(θ)‖∞,
then any optimal solution̂θℓ1 satisfies

‖θ̂ℓ1 − θ‖2≤
2
√
sγn
κ

+

√
2γnσs(θ)

κ
. (⋆)

In order to use Lemma 8, we need to controlγn =
‖∇L(θ)‖∞. We have:

∇L(θ) =
2

n
XT (xn

1 −Xθ), (35)

It is easy to check that by the uncorrelatedness of the innova-
tionswk ’s, we have

E [∇L(θ)] =
2

n
E
[
XT (xn

1 −Xθ)
]
=

2

n
E
[
XTwn

1

]
= 0.

(36)
Eq. (36) is known as the orthogonality principle. We next show
that∇L(θ) is concentrated around its mean. We can write

(∇L(θ))i =
2

n
xn−iT

−i+1w
n
1 ,

and observe that thejth element in this expansion is of the
form yj = xn−i−j+1wn−j+1. It is easy to check that the
sequenceyn1 is a martingale with respect to the filtration given
by

Fj = σ
(
xn−j+1
−p+1

)
,

whereσ(·) denote the sigma-field generated by the random
variablesx−p+1, x−p+2, · · · , xn−j+1. We use the following
concentration result for sums of dependent random variables
[48]:

Lemma 9. Fix n ≥ 1. Let Zj ’s be sub-GaussianFj-
measurable random variables, satisfying for eachj =
1, 2, · · · , n,

E [Zj |Fj−1] = 0, almost surely,

then there exists a constantc such that for allt > 0,

P



∣∣∣∣∣∣
1

n

n∑

j=1

Zj − E[Zj ]

∣∣∣∣∣∣
≥ t


 ≤ exp

(
−nt2

c2

)
.

Proof: This is a special case of Theorem 3.2 of [48]
or Lemma 3.2 of [49], for sub-Gaussian-weighted sums of
random variables. The constantc depends on the sub-Gaussian
constant ofZi’s.

Sinceyj ’s are a product of two independent sub-Gaussian
random variables, they are sub-Gaussian as well. Lemma 9
implies that

P (|∇L(θ)i|≥ t) ≤ exp

(
− nt2

c20σ
4
w

)
. (37)

wherec20 := c2

σ4
w

is an absolute constant. By the union bound,
we get:

P

(
‖∇L(θ)‖∞ ≥ t

)
≤ exp

(
− t2n

c20σ
4
w

+ log p

)
. (38)

Let d4 be any positive integer. Choosingt =

c0σ
2
w

√
1 + d4

√
log p
n , we get:

P

(
‖∇L(θ)‖∞ ≥ c0σ

2
w

√
1 + d4

√
log p

n

)
≤ 2

nd4
.

Hence, a choice ofγn = d2

√
log p
n with d2 := c0σ

2
w

√
1 + d4,

satisfiesγn ≥ ‖∇L(θ)‖∞ with probability at least1− 2
nd4

. Let
d1 = (2c′η)

2/3. Using Lemma 6, the fact thatn > d1sp
2/3 by

hypothesis, andp > n we have that the RSC of orders hold

for κ =
σ2
w

16π with a probability at least1−2c1p
3 exp(− cηp

1/3

2 ).
Combined these two assertions, the claim of Theorem 1
follows for d3 = 32πc0

√
1 + d4.

C. Proof of Theorem 2

The proof is mainly based on the following lemma, adopted
from Theorem 2.1 of [33], stating that the greedy procedure is
successful in obtaining a reasonables⋆-sparse approximation,
if the cost function satisfies the RSC:

Lemma 10. Let s⋆ be a constant such that

s⋆ ≥ s

η2
log

5s

η2
, (39)

and suppose thatL(θ) satisfies RSC of orders⋆ with a
constantκ > 0. Then, we have

∥∥∥θ̂(s⋆)
OMP − θS

∥∥∥
2
≤

√
6εs⋆

κ
,

whereηs⋆ satisfies

εs⋆ ≤
√
s⋆ + s‖∇L(θS)‖∞. (40)

Proof: The proof is a specialization of the proof of
Theorem 2.1 in [33] to our setting with the spectral spread
1/4η2.

In order to use Lemma 10, we need to bound‖∇L(θS)‖∞.
We have:

E [∇L(θS)] =
1

n
E
[
XT (xn

1 −XθS)
]
=

1

n
E
[
XTX(θ − θS)

]

= R(θ − θS) ≤
σ2
w

2πη2
ςs(θ)1,

where in the second inequality we have used (36), and the
last inequality results from Corollary 1. Letd′4 be any positive
integer. Using the result of Lemma 9 together with the union
bound yields:

P

(
‖∇L(θS)‖∞≥ c0σ

2
w

√
1 + d′4

√
log p

n
+

σ2
wςs(θ)

2πη2

)
≤ 2

nd′

4

.

Hence, we get the following concentration result forεs⋆ :

P

(
εs⋆ ≥

√
s⋆ + s

(
c0σ

2
w

√
1 + d′4

√
log p

n
+

σ2
wςs(θ)

2πη2

))

≤ 2

nd′

4

. (41)

Noting that by (39) we haves⋆ + s ≤ 4s log s
η2 . Let d′1 =

4(2c′η)
2/3. By the hypothesis ofςs(θ) ≤ As1−

1
ξ for some
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constantA, and invoking the results of Lemmas 6 and 10, we
get:

∥∥∥θ̂(s⋆)
OMP − θS

∥∥∥
2
≤ d′2

√
s log s log p

n
+ d′′2

√
s log sςs(θ)

≤ d′2

√
s log s log p

n
+ d′′2

√
log s

s
1
ξ− 3

2

,

whered′2 =
16πc0

√
24(1+d′

4)

η and d′′2 = A
πη3 , with probability

at least1− 2c1p
3 exp(− cηp

1/3

2 )− 2

nd′
4
≥ 1− 3

nd′
4
. Finally, we

have:
∥∥∥θ̂(s⋆)

OMP − θ

∥∥∥
2
=
∥∥∥θ̂(s⋆)

OMP − θS + θS − θ

∥∥∥
2

≤
∥∥∥θ̂(s⋆)

OMP − θS

∥∥∥
2
+ ‖θS − θ‖2.

Choosingd′3 = 2d′′2 completes the proof.

D. Proof of Proposition 1

Consider the event defined by

A :=

{
max
i,j

|R̂ij −Rij |≤ τ

}
.

Eq. (29) in the proof of Lemma 4 implies that:

P(Ac) ≤ c1p
2(n+ p) exp

(
− c2

√
τn

c3σ4
w(n+p)

τ3/2n3/2 + σw

)
.

By choosingτ as in the proof of Theorem 1, we have

R2
est(θ̂minimax) ≤ R2

est(θ̂ℓ1) = sup
H

(
E

[
‖θ̂ℓ1 − θ‖22

])

≤ P(A)d23
s log p

n
+ sup

H
EAc

[
‖θ̂ℓ1 − θ‖22

]

≤ d23
s log p

n

+ 8(1− η)2c1 exp

(
− c2

√
τn

c3σ4
w(n+p)

τ3/2n3/2 + σw

+ 3 log p

)
,

where the second inequality follows from Theorem 1, and
the third inequality follows from the fact that‖θ̂ℓ1 − θ‖22≤
4(1 − η)2 by the sufficient stability assumption. Forn >
d1sp

2/3, the first term will be the dominant, and thus we get

Rest(θ̂minimax) ≤ 2d3

√
s log p

n , for large enoughn.

As for a lower bound onRest(θ̂minimax), we take the
approach of [25] by constructing a family of AR processes
with sparse parametersθ for which the minimax risk is optimal
modulo constants. In our construction, we assume that the
innovations are Gaussian. The key element of the proof is the
Fano’s inequality:

Lemma 11 (Fano’s Inequality). Let Z be a class of densities
with a subclassZ⋆ of densitiesfθi , parameterized byθi, for
i ∈ {0, · · · , 2M}. Suppose that for any two distinctθ1, θ2 ∈
Z⋆, DKL(fθ1‖fθ2) ≤ β for some constantβ. Let θ̂ be an
estimate of the parameters. Then

sup
j

P(θ̂ 6= θj |Hj) ≥ 1− β + log 2

M
, (42)

whereHj denotes the hypothesis thatθj is the true parameter,
and induces the probability measureP(.|Hj).

Consider a classZ of AR processes withs-sparse parame-
ters over any subsetS ⊂ {1, 2, · · · , p} satisfying|S|= s, with
parameters given by

θℓ = ±e−m
1S(ℓ), (43)

where m remains to be chosen. We also add the all zero
vectorθ to Z. For a fixedS, we have2s +1 such parameters
forming a subfamilyZS . Consider the maximal collection of(
p
s

)
subsetsS for which any two subsets differ in at least

s/4 indices. The size of this collection can be identified by
A(p, s

4 , s) in coding theory, whereA(n, d, w) represents the
maximum size of a binary code of lengthn with minimum
distanced and constant weightw [50]. We have

A(p, s
4 , s) ≥

p
7
8 s−1

s!
,

for large enoughp (See Theorem 6 in [51]). Also, by the
Gilbert-Varshamov bound [50], there exists a subfamilyZ⋆

S ⊂
ZS , of cardinality|Z⋆

S |≥ 2⌊s/8⌋+1, such that any two distinct
θ1, θ2 ∈ Z⋆

S differ at least ins/16 components. Thus for
θ1, θ2 ∈ Z⋆ :=

⋃

S

Z⋆
S , we have

‖θ1 − θ2‖2≥
1

4

√
se−m =: α, (44)

and |Z⋆|≥ p
7
8
s−1

s! 2⌊s/8⌋. For an arbitrary estimatêθ, consider

the testing problem between thep
7
8
s−1

s! 2⌊s/8⌋ hypothesesHj :
θ = θj ∈ Z⋆, using the minimum distance decoding strategy.
Using Markov’s inequality we have

sup
Z

E

[
‖θ̂ − θ‖2

]
≥ sup

Z⋆

E

[
‖θ̂ − θ‖2

]

≥ α

2
sup
Z⋆

P

(
‖θ̂ − θ‖2≥

α

2

)

=
α

2
sup
j

P

(
θ̂ 6= θj |Hj

)
. (45)

Let fθj denote joint probability distribution of{xk}nk=1 con-
ditioned on {x}0−p+1 under the hypothesisHj . Using the
Gaussian assumption on the innovations, fori 6= j, we have

DKL(fθi‖fθj) ≤ sup
i6=j

E

[
log

fθi

fθj

|Hi

]

≤ sup
i6=j

E

[
− 1

2σ2
w

n∑

k=1

((
xk − θ

′
ix

k−1
k−p

)2
−
(
xk − θ

′
jx

k−1
k−p

)2) ∣∣∣Hi

]

≤ sup
i6=j

n

2σ2
w

E

[(
(θi − θj)

′xk−1
k−p

)2 ∣∣∣Hi

]

=
n

2σ2
w

sup
i6=j

(θi − θj)
′R(θi − θj)

≤ nλmax

2σ2
w

sup
i6=j

‖θi − θj‖22≤
nse−2m

64πη2
=: β. (46)

Using Lemma 11, (44), (45) and (46) yield:

sup
Z

E

[
‖θ̂ − θ‖2

]
≥

√
se−m

8


1−

2
(

nse−2m

64πη2 + log 2
)

s log p


 .
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for p large enough so thatlog p ≥ log s− 9
8

3
8− 1

s

. Choosingm =

1
2 log

(
n

8πη2 log p

)
gives us the claim of Proposition 1 withL =

d3

η
√
2π

for large enoughs andp such thats log p ≥ log(256).

The hypothesis ofs ≤ 1−η√
8πη

√
n

log p guarantees that for all

θ ∈ Z⋆, we have‖θ‖1≤ 1− η.

APPENDIX B
STATISTICAL TESTS FORGOODNESS-OF-FIT

In this appendix, we will give an overview of the statistical
goodness-of-fit tests for assessing the accuracy of the AR
model estimates. A detailed treatment can be found in [52].

A. Residue-based tests

Let θ̂ be an estimate of the parameters of the process. The
residues (estimated innovations) of the process based onθ̂ are
given by

ek = xk − θ̂xk−1
k−p, i = 1, 2, · · · , n.

The main idea behind most of the available statistical tests
is to quantify how close the sequence{ei}ni=1 is to an i.i.d.
realization of a known distributionF0 which is most likely
absolutely continuous . Let us denote the empirical distribution
of then-samples byF̂n. If the samples are generated fromF0

the Glivenko-Cantelli theorem suggests that:

sup
t

|F̂n(t)− F0(t)| a.s.−→ 0.

That is, for largen the empirical distribution̂Fn is uniformly
close to F0. The Kolmogorov-Smirnov (KS) test, Cramér-
von Mises (CvM) criterion and the Anderson-Darling (AD)
test are three measures of discrepancy betweenF̂n and F0

which are easy to compute and are sufficiently discriminant
against alternative distributions. More specifically, thelimiting
distribution of the following three random variables are known:
The KS test statistic

Kn := sup
t

|F̂n(t)− F0(t)|,

the CvM statistic

Cn :=

∫ (
F̂n(t)− F0(t)

)2
dF0(t),

and the AD statistic

An :=

∫
(
F̂n(t)− F0(t)

)2

F0(t) (1− F0(t))
dF0(t).

For large values ofn, the Glivenko-Cantelli theorem also sug-
gests that these statistics should be small. A simple calculation
leads to the following equivalent for the statistics:

Kn = max
1≤i≤n

max

{∣∣∣∣
i

n
− F0(ei)

∣∣∣∣ ,
∣∣∣∣
i− 1

n
− F0(ei)

∣∣∣∣
}
,

nCn =
1

12n
+

n∑

i=1

(
F0(ei)−

2i− 1

2n

)2

,

and

nAn = −n− 1

n

n∑

i=1

(2i− 1)
(
logF0(ei)+log

(
1− F0(ei)

))
.

B. Spectral domain tests for Gaussian AR processes

The aforementioned KS, CvM and AD tests all depend on
the distribution of the innovations. For Gaussian AR processes,
the spectral versions of these tests are introduced in [39].These
tests are based on the similarities of the periodogram of the
data and the estimated power-spectral density of the process.
The key idea is summarized in the following lemma:

Lemma 12. LetS(ω) be the (normalized) power-spectral den-
sity of stationary process with bounded spectral spread, and
Ŝn(ω) be the periodogram of then samples of a realization
of such a process, then for allω we have:

√
n

(
2

∫ ω

0

(
Ŝn(λ)− S(λ)

)
dλ

)
d.−→ Z(ω), (47)

whereZ(ω) is a zero-mean Gaussian process.

The explicit formula for the covariance function ofZ(.) is
calculated in [39]. Lemma 12 suggests that for a good estimate
θ̂ which admits a power spectral densityS(ω; θ̂), one should
get a (closeto) Gaussian process replacingS(ω) with S(ω; θ̂)
in (47). The spectral form of the CvM, KS and AD statistics
can thus be characterized given an estimateθ̂.
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