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Abstract—We consider the problem of estimating the pa- [16]. The non-zero AR parameters in these models correspond
rameters of a linear autoregressive model with sub-Gaussia to significant time lags at which the underlying dynamics op-
innovations from a limited sequence of consecutive obsertians. erate. Traditional model selection procedures based teriari
performance of the ¢;-regularized least squares as well as a Suph _as Final F)_refj'Ct'on Error.(FPE) [17], _Aka'kfe lr].format'
greedy estimator of the parameters and characterize the saping ~ Criterion (AIC) [18] and Bayesian Information CriterionI®)
trade-offs required for stable recovery in the non-asympttic [19] are not efficient in order selection of sparse AR proesss
regime. Our results extend those of compressed sensing fanéar  as the ambient dimension of the parameters can be much
models where the covariates are i.i.d. and independent of ¢h larger than the sparsity. Also, these criteria pertain te th

observation history to autoregressive processes with highinter- toti ) d their finit le behavior is ndit
dependent covariates. We also derive sufficient conditionsn the asymptouc regimes an eir nite sample behavior is nat we

sparsity level that guarantee the minimax optimality of the ¢,- understood.

regularized least squares estimate. Applying these techies to In recent years, the theory of compressed (CS) has become

simulated data as well as real-world datasets from crude oil the standard framework for measuring and estimating sparse

prices and traffic speed data confirm our predicted theoretial — gtatistical models [20]5[22]. The theoretical guarantee€s

performance gains in terms of estimation accuracy and model . - - .

selection. imply that when the number of incoherent measurements are
roughly proportional to the sparsity level, then stableovecy

of these models is possible. A key underlying assumption in

most of the existing theoretical analyses of linear modetke

independence and identical distribution (i.i.d.) of thevard

ates. Exceptions include measurement constructions lmased

Autoregressive (AR) models are among the most fundeerrelated designs, and Toeplitz matrices where the désign

mental tools in analyzing time series. Applications in@udextrinsic, fixed in advance and is independent of the unaerly

financial time series analysis! [2] and traffic modeling [B}-[ sparse signal23][124] Such assumptions do not hold for AR

Due to their well-known approximation property, these msdeprocesses, as the intrinsic history of the process playsoilee

are commonly used to represent stationary processes iraa paf the covariates. Hence the underlying interdependence in

metric fashion and thereby preserve the underlying stractithe model hinders a straightforward application of exg@5

of these processes|[9]. In order to leverage the approxdmatresults to AR modeling.

property of AR models, often times parameter sets of veryIn this paper, we address this issue by extending the armlyse

large order are required[[10]. For instance, any autoreiy@s of CS theory to the estimation of compressible AR processes,

moving average (ARMA) process can be represented by and relaxing the assumptions of i.i.d. covariates. In palkir,

Index Terms—linear autoregressive processes, sparse estima-
tion, compressive sensing, sampling.

I. INTRODUCTION

AR process of infinite order. Statistical inference usings#h we will consider an AR process with sparse parameters and

models is usually performed through fitting a long-order ARVill analyze the performance of a LASSO-type estimator{cor
model to the data, which can be viewed as a truncatipesponding tof;-regularized Least Squares (LS) estimation)
of the infinite-order representation [11]-[14]. In genethle as well as a greedy solution. We will present theoretical
ubiquitous long-range dependencies in real-world timéser guarantees that extend those of CS theory and characterize
such as financial data, results in AR model fits with largeindamental trade-offs between the number of measurements
orders [2]. compressibility, and estimation error of AR processes in
In various applications of interest, the AR parameters fite non-asymptotic regime. Our results reveal that when the
to the data exhibit sparsity, that is, only a small number @fumber of measurements scaigb-linearlywith the product
the parameters are non-zero. Examples include autoregresef the ambient dimension and the sparsity level, then stable
communication channel models, quasi-oscillatory datadunrecovery of the underlying models is possible, even thohgh t
around specific frequencies and financial time sefies|[8], [1 covariates solely depend on the history of the process.i$his
. . _a significant improvement over existing results for stabir A
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oil price and traffic data which reveal that the sparse eséma We will also assume that the parameter vedois com-

significantly outperform traditional techniques such as ttpressible (to be defined more precisely later), and can ble wel

Yule-Walker based estimatoris |26]. approximated by an-sparse vector where< p. We observe
The rest of the paper is organized as follows. In Section consecutive snapshots of length(a total ofn + p — 1

M we will introduce the notations and problem formulationsamples) from this process given l{)yk}}g}p+1 and aim to

In section[l, we will state the main problem of interesestimated by exploiting its sparsity; to this end, we aim at

and the estimation methods for the parameters of an AfRdressing the following questions:

process. We will also present the main theoretical resiflts 0, Are the conventional LASSO-type and greedy techniques

this paper on robust estimation of AR parameters. In section syjtable for estimating?

[M-Dlwe establish the minimax optimality of the-regularized  , \What are the sufficient conditions enin terms ofp and

LS estimator. Section IV includes our simulation results on s, to guarantee stable recovery?

simulated data as well as the real-world financial and traffic, Given these sufficient conditions, how do these estimators

data. perform compared to conventional AR estimation tech-
niques?
Il. NOTATIONS AND PROBLEM FORMULATION Traditionally, the Yule-Walker (YW) equations or least
Throughout the paper we will use the following notationssquares formulations are used to fit AR models. Since these
We will use the notation] to denote the vectdr;, - -- ,z;]T.  methods do not utilize the sparse structure of the parasjeter

We will denote the estimated values l§y and the biased they usually requiren > p samples in order to achieve

estimates with the superscrigt)®. Throughout the proofs, satisfactory performance. The YW equations can be exptesse

c;'s express absolute constant which may change from line@8

line where there is no ambiguity. By, we mean an absolute RO = 7“311,7 ro = OTT:;) + UVQW (4)

constant which only depends on a positive constant
Consider an AR{) process defined by

where R := R,y, = E[z?z}"] is the p x p covariance

matrix of the process and;, = E[z;z;;x] is the autocor-
Tk = 0121+ 02224+ OpTp_p +wy = eTx’,j:;jLw,w relation of the process at laf. The covariance matrixg

(1) and autocorrelation vectof:; are typically replaced by their
where {w;}?2.___ is an ii.d sub-Gaussian innovation sesample counterparts. Estimation of the ARparameters from
quence with zero mean and varianeg. This process can the YW equations can be efficiently carried out using the
be considered as the output of an LTI system with transfBurg’s method[[28]. Other estimation techniques include LS

function ) regression and maximum likelihood (ML) estimation. In this
H(z) = Ow _ (2) Paper, we will consider the Burg’'s method and LS solutions
1=3>0 02" as comparison benchmarks. Whetis comparable t@, these

two methods are known to exhibit substantial performance
differences([20].

When fitted to the real-world data, the parameter veétor
usually exhibits a degree of sparsity. That is, only certags

Throughout the paper we will assunj@|;<1—-n <1 to
enforce the stability of the filter. We will refer to this assp-
tion asthe sufficient stability assumptipsince an AR process

with poles within the unit circle does not necessarily $atis ; Co T Al
16]1< 1. However, beyond second-order AR processes,”ﬂ the history have a significant contribution in determgin

is not straightforward to state the stability of the process € Statistics of the process. These lags can be thought of
terms of its parameters in a closed algebraic form, whi@ the intrinsic delays in the underlying dynamics. To be
in turn makes both the analysis and optimization procedur@9re Precise, for a sparsity level < p, we denote by
intractable. The AR process given byz,} _in @) is 2 C {1,2,---,p} the support of thes largest elements of
stationary in the strict sense. Also Hyl (2) the power spectfl in absolute value, and b the bests-term approximation
density of the process equals to 6. We also define

o2 05(0) == [0 — Os]|1 (5)
S(w) = A 3)
L= > 0 Oee™7% and
The sufficient stability assumption implies boundedness of ss(0) = |6 — 052 (6)

the spectral spread of the process defined as which capture the compressibility of the parameter vector

p= Supg(w)/inf‘s(w)_ 0 in the ¢, and ¢, sense, respectively. Note that by def-
w w inition ¢;(0) < o04(0). For a fixed¢ e (0,1), we say
We will discuss how this assumption can be further relaxed that 8 is (s,&)-compressibleif o4(0) = O(s'"%) [30]

Appendix[A-B. The spectral spread of stationary processesand (s, £, 2)-compressibleif ¢;(0) = (’)(51*%). Note that
general is a measure of how quickly the process reaches(is¢, 2)-compressibilityis a weaker condition thards, £)-
ergodic state [25]. An important property that we will useefa compressibilityand whené = 0, the parameter vectd? is

in this paper is that the spectral spread is an upper boundectly s-sparse.

the eigenvalue spread of the covariance matrix of the psocesFinally, in this paper, we are concerned with the compressed
of arbitrary size[[2/7]. sensing regime where < p, i.e., the observed data has



a much smaller length than the ambient dimension of tmeveal sufficient conditions on with respect top as well as
parameter vector. The main estimation problem of this papercriterion to choosey,,, which result in stable estimation of
can be summarized as follongiven observations” ,  ; from 6. Throughout our analysis, we fix the ambient dimension
an AR process with sub-Gaussian innovations and boundatd aim at deriving sufficient conditions en< p resulting
spectral spread, the goal is to estimate the unknogwn in stable estimation. In many applications of interest, data
dimensional s, £, 2)-compressible AR parameter vectbin a correlations are exponentially decaying and negligiblgobbel
stable fashion (where the estimation error is controlledlew a certain lag, and hence for large enouyghautoregressive

n <K p. models fit the data very well in the prediction error sense.
Recall that, the Yule-Walker solution is given by
[1l. THEORETICAL RESULTS = Sl
) ) ) ) S 0,, :=argmin J(0) = 1‘%‘17111)7 (11)
In this section, we will describe the estimation procedures 0c®
and present the main theoretical results of this paper. where

3(0) = |RO — 71 2.

A. /;1-regularized least squares estimation . .
ey ; We further consider two other sparse estimatorséfdoy pe-

_ Given the sequence of observatiaris, , and an estimate njizing the Yule-Walker equations. THe-regularized Yule-
6, the normalized estimation error can be expressed as: \walker estimator is defined as:

2 1 12 ~ ) N
2(0) == ‘ - XHH , @) Oy iy, :=argmin  J(0) + 7,01, (12)
n 2 (S
where where~, > 0 is a regularization parameter. Similarly, using
Tp—1 Tp—2 - Tpep the robust statistics instead of the Gaussian statistlos, t
Tn—2 Tp—3 - Tp—p—1 estimation error can be re-defined as:

X = : . . : ) S

: : g : 31(0) := |RO =7, |11,
oo -1t Toptd we define the/;-regularized estimates as
Note that the matrix of covariatés is Toeplitz with highly ~

interdependent elements. The LS solution is thus given by: Opw,:s = aré‘;e%in J1(8) + nll6]]1- (13)
5._5 = argmin £(6), (9)
oco B. Greedy estimation
where , Although there exist fast solvers for the convex problems
0 :={6 cR”|[0]1<1-n} of the type given by[{10),[(12) and {13), these algorithms

is the convex feasible region for which the stability of th@re polynomial time inn and p, and may not scale well
process is guaranteed. In the regime of interest wheq p, With the dimension of data. This motivates us to consider
the LS estimator is ill-posed and is typically regularizeihw 9gréedy solutions for the estimation & In particular, we
a smooth norm. In order to capture the compressibility of téll consider and study the performance of a generalized

parameters, we consider tieregularized LS estimator: ~ Orthogonal Matching Pursuit (OMP) algorithin [32]. [33]. A
flowchart of this algorithm is given in Table | for completesse

0, :=argmin  £(8) + v,/|6||1, (10) At each iteration, a new component & for which the
6ce gradient of the error metriff@) is the largest in absolute value

where~, > 0 is a regularization parameter. It is easy tés chosen and added to the current support. The algorithm
verify that the objective function and constraints in EcO)(1 Proceeds for a total of* = O(slog s) steps, resulting in an
are convex ird and hencé,, can be obtained using standard

numerical solvers. Note that the solution fo](10) might net
unique. However, we will provide error bounds that hold far Input: §(), s*

all possible solutions of {10), with high probability. Output: Bomp = 5&;&

Consistency of the estimator given Hyl (9) was shown |n =~ Start with the index ses(® = @
[2] whenn — oo for Gaussian innovations. In the case of |n|t|aI|zat|0n:{ and the initial estimat@p = 0
Gaussian innovations the LS estimates correspond to condi-for £k =1,2,---,s*
tional ML estimation and are asymptotically unbiased under j = argmax’(Vf (égpﬁ)) ‘

mild conditions, and withp fixed, the solution converges to o
the true parameter vector as — oo. However, whenp is % o :
allowed to scale withn, the convergence rate is not known. For omp = T8 E 76)
) supp(z)CS
fixed p, the estimation error is of the ordéX(p/n) in general end
[24]. This makes the analysis of LS estimators, and in génera

regularized M-estimators, very challengingl[31]. Nevehtss, _ ) . )
such an analysis has significant practical implication,e#l ~ 'ABLE I: Generalized Orthogonal Matching Pursuit (OMP)




estimate withs* components. When the error metri{f#) sequence. The dominant loss@fp?/3) does not seem to be

is chosen, the generalized OMP corresponds to the origisénificantly improvable, as AR processes are known for slow
OMP algorithm. For the choice of the YW error metfj¢d), convergence to their ergodic state.

we denote the resulting greedy algorithm yoyOMP. Remark 2. On the positive side, compared to existing guar-
antees for LS estimation techniques for AR processes which
typically requireO(p?) measurement5 [25], our result predicts

_ _ _ o a significant saving of the ordegs?/3s~!. It can also be
The main theoretical result regarding the estimation pe§pown that the estimation error for the LS method in general

formance of the/;-regularized LS estimator is given by thegcgles as /p/n [24] which is not desirable when < p.

following theorem: Our result, however, guarantees a much smaller error rate
Theorem 1. If 0,(8) = O(\/5), there exist positive constantsOf the order \/slogp/n. Also, the sufficiency conditions
dy,ds,ds and dy such that forn > dysp®/® and a choice of Of Theorem(2 require high compressibility of the parameter
vector @ (¢ < 1/2), whereas Theorerm] 1 does not impose
any extra restrictions oé € (0, 1). Intuitively speaking, these
two comparisons reveal the trade-off between computdtiona

~ [slogp Jlogp complexity and measurement/compressibility requiresiéont
Hé)g] - 0H2 < ds n + Vd305(0) n (14)  convex optimization vs. greedy techniques, which are well-
. . 1 known for linear modeld [34].
with probability greater thanl — O(—;). The constants are Remark 3. The conditions, () = O(/5) in TheorentlL is not

) : (s LOHSAl
only functions ofe,, and ) and are explicitly given in the \oqyicting for the processes of interest in this papersTi
proof. due to the fact that the boundedness assumption on theapectr

Similarly, the following theorem characterizes the estim&pread implies an exponential decay of the parameters (See

tion performance bounds for the OMP algorithm: Lemma 1 of [25]). Finally, the constant, d; are increasing
with respect to the spectral spread of the progesstuitively

speaking, the closer the roots of the filter given[By (2) gé¢héo
unit circle (corresponding to largerand smaller), the slower
the convergence of the process will be to its ergodic staig, a
R . [slogslogp log s hence more measurements are requir_ed. A similar dependence
HG’OMP - 9H < dy\/ +dj T (15) to the spectral spread has appeared in the resulfs_bf [25] for
? " ¢ ¢o-regularized least squares estimation of AR processes.
after s* = n% log % iterations with probability greater than Remark 4. The main ingredient in the proofs of Theorefs 1
1 0 (i) The constants are only functions af and 8 8 e e . We il show
and are explicitly given in the proof. that if the bounded spectral spread condition holds, then
The results of Theoreni$ 1 ahH 2 suggest that under suitalvieh » = O(sp?/?) the sample covariance matrix is sharply
compressibility assumptions on the AR parameters, one aancentrated around the true covariance matrix and hemece th
estimate the parameters reliably using theregularized LS RE condition can be guaranteed. All constants appearing in
and OMP estimators with much fewer measurements coMheorem$l anfl]2 are explicitly given in Appenfix A-B. As
pared to those required by the Yule-Walker/LS based methodstypical numerical example, fof = 0.5 ando?2, = 0.01, the
To illustrate the significance of these results furtheresalv constants of Theorefd 1 can be choserdass 1000, ds ~
remarks are in order: 0.5 —1,d3 ~ 10, anddy ~ 4. The full proofs are given in
Remark 1. Comparing the sufficient condition = O(sp?/3)  Appendix[A-B.
of Theorem[ll with those of[ [20]=[22] for linear models
with i.i.d. measurement matrices given by = O(slogp)
reveals that a loss of ordeP(p?/3) is incurred, although . . . o o
both conditions requirex < p. However, this loss seems N this section, we establish the minimax optimality of
to be natural as it stems from two major differences dhe ¢1-regularized ITS estimator f(_)r AR processes with sparse
our setting as compared to traditional CS: first, the samgl@rameters. To this end, we will focus on the clagsof
space characterizing the covariates, ; is (n + p — 1)- stationary processes which admit an AR(epresentation
dimensional, whereas in traditional CS the sample spacegih s-sparse parametef such that||f[;< 1 —» < 1.
the measurement matrix ig-dimensional. Second, each rowlhe theoretical results of this section are inspired by the
of the measurement matriX highly depends on the entire€nlightening results of [25] on non-asymptotic order sitec
observation sequened, whereas in traditional CS, each row/ia fo-regularized LS estimation in the absence of sparsity,
of the measurement matrix is only related to the correspandi@nd extend them by studying tifg-regularized LS estimator
measurement. Hence, the aforementioned loss can be vieRE€L0)- ) ) S
as the price of self-averaging of the process accounting for/Ve define the maximagstimationrisk over?{ to be
the low-dimensional nature of the covariate sample spade an ~ ~ o1\ /2
the high inter-dependence of the covariates to the obsenvat Rest(8) = S%p (]E {”0 B OHQD '

C. Estimation performance guarantees

regularization parametefy,, = da4/ 1"%, any sqution@?\g1 to
(@10) satisfies the bound

Theorem 2. If 0 is (s, &, 2)-compressible for somé < 1/2,
there exist positive constant§, d;, d; and d} such that for
n > djsp*/3log s, the OMP estimate satisfies the bound

D. Minimax optimality

(16)



The minimax estimator is the one minimizing the maximal It can be readily observed that far > s the prediction

estimation risk, i.e., error variance is very close to the variance of the innoweatio
~ ) ~ The proof is similar to Theorem 3 of [25] and is skipped in
Orminimax 1= argmin Rest(o)- (17)

0c@ this paper for brevity.

Minimax estimato® minimax, in general, cannot be constructed V. APPLICATION TO SIMULATED AND REAL DATA

explicitly [25], and the common practice in non-parametric | this section, we study and compare the performance of

estimation is to construct an estimaébwhich isorder optimal  vyjje-Walker based estimation methods with those of the

as compared to the minimax estimator: regularized and greedy estimators given in sedfian Ill.SEhe
Rest(0) < LRest(Ominima)- (18) method§ are applied to §|mulated data as well as real data fro

crude oil price and traffic speed.
with . > 1 being a constant. One can also define the
minimax predictionrisk by the maximal prediction error overa. Simulation studies

all possible realizations of the process: In order to simulate an AR process, we filtered a Gaussian

R2 (D) = ~ 1 white noise process using an IIR filter with sparse pararseter
pre(0) := S%pE {(xk —0 xkfp) } : (19) Figure[d shows a typical sample path of the simulated AR
process used in our analysis. For the parameter vegtor
we chose a length op = 300, and employedn = 1500

~

In [25], it is shown that arfs-regularized LS estimator with

> 2T O , ;
an tofdeftp the 89(108’?) IS m_|n|maxh optimal. 'I|_'|h|s order generated samples of the corresponding process for efstimat
pertans 1o the denoising regime where> p. Hence, - 1o parameter vectof is of sparsity levels = 3 and

order to capture long order lags of the process, one requires | 16]1= 0.5. A value of v, = 0.1 is used, which
a sample size exponentially large a0 which may make the is slightly tuned around the theoretical estimate given by

estimation problem computationally infeasible. For insta TheorentlL. The order of the process is assumed to be known.

consider az-_sparse paramt_eter W'.th. ondy an_d O _be|ng non- - yye compare the performance of seven estimatoré@.psing
zero. Then, in order to achieve minimax optimality= O(27) LS, 2) éyw using the Yule-Walker equations, 5)1 from ;-

measurements are required. In contrast, in the compressive ~ . ~ . ~ .
) . ’ L regularized LS, 4 using OMP, 5)0 using Eq.
regime wheres, n < p, the goal, instead of selecting is to J o 9 VOt g =

find conditions on the sparsity leve] so that for a givem deZ),t.(S) 01““51@. ustlr?g Eq. KIBI) a(;\%ﬂlyawogp u|nzg tT]e costth
and large enough, the ¢;-regularized estimator is minimax unction 3(9) in the generalize - Figutg = shows the

optimal without explicit knowledge of the value ef(See for e_stlmated parameter vectors using these algorlthms._ Ibean
example, [35]). visually observed that,-regularized and greedy estimators

In the following proposition, we establish the minimafhown in purple) significantly outperform the Yule-Walker

optimality of the ¢;-regularized estimator over the class o alsed %surntates (sht_owr][r:n ?r?tnge).b i isel
sparse AR processes withe ©: n order to quantify the latter observation precisely, we

repeated the same experiment for= 300,s = 3 and
Proposition 1. Let z be samples of an AR process with0 < n < 10°. A comparison of the normalized MSE of
s-sparse parameters satisfying@||;< 1 — n and s < the estimators vsn is shown in Figure[l3. As it can be

min { \}*_’7 [ ,ﬁ}, Then, we have: inferred from Figurd 13, in the region whereis comparable
87 &P " ap to p (shaded in light purple), the sparse estimators have
Rest(02,) < LRest(Brmimimar)- a systematic performance gain over the Yule-Walker based

_ _ _ estimates, with the;-regularized LS and ywOMP estimates
whereL is a constant and is only a function gfand o2 and outperforming the rest.

is explicitly given in the proof. The MSE comparison in Figuriel 3 requires one to know

Remark 5. Proposition[lL implies that,-regularized LS is the_true parameters._ln practice, the true parameters_are no
minimax optimal in estimating the-sparse parameter vectoravailable for comparison purposes. In order to quantify the
9, for small enoughs. The proof of the Propositidd 1 is givenperformance gain of these methods, we use statistical tests
in AppendixAD. This result can be extended to compressib'i% assess the good.ne.ss—of—flt of the estimates. The common
9 in a natural way with a bit more work, but we only preserftli-Sauare type statistical tests, such as the F-test, sefilu
the proof for the case of-sparsed for brevity. We also state when the hypothesized distribution to be tested against is

the following proposition on the prediction performancetgg  discrete or categorical. For our problem setup with sub-
¢1-regularized LS estimator: Gaussian innovations, we will use a number of statistical

Proposition 2. Letz” ., be samples of an AR process with

sparse parameters and Gaussian innovations, then thesésexi
a positive constanti; such that for large enough,p ands =
satisfyingn > d; sp?/3, we have: o2

N 1 0 40 80 120 160 200
Reve(01,) < dy 280 4 52 (20) n
" Fig. 1: Samples of the simulated AR process.



0.2 0 0.2 Bowp TABLE IlI: Goodness-of-fit tests for the simulated data
A 0.1 A Test
0 0 Estimate CvWM AD KS SCvM
-0.1 0 031 154 0.031 0.009
0.2 Ois 0.68 5.12 0.037 0.017
5 5 Oy 0.65 4.87 0.034 0.025
OLs Oy, 0r, o
0.1 6¢, 0.34 1.72 0.030/ 0.009
o 01 A fowp 029 145 0028 0.009
0 H—— y Oyw s 0.35 1.80 0.032 0.009
-0.1 P
0.1 W Oy, t1 1 0.42 233 0.040 0.008
R - 0, womp 029 146 0.030 0.009
oyW Byw,[m
0.1
0.1 A . . ) .
0 [40Q]. This dataset consists of 7429 daily values of oil gioe
-0.1 0 dollars per barrel. In order to avoid outliers, usually tlatadet
-0.1 is filtered with a moving average filter of high order. We have
B, Bywonp skippgd this procedure by visual inspeqtion of the _data _and
0.1 02 selectingn = 4000 samples free of outliers. Such financial
0 I MA — e 0 data sets are known for their non-stationarity and long rorde
ol W history dependence. In order to remove the determinisitis
' in the data, one-step or two-step time differencing is tgihc

-0.2
50 100 150 200 250 300 50 100 150 200 250 300 ) . . . .
’ "7 used. We refer td [8] for a full discussion of this detrending

Fig. 2: Estimates ob for n = 1500, p = 300, ands = 3 method. We have used a first-order time differencing which
(These results are best viewed in the color version). resulted in a sufficient detrending of the data. Fidure 4 show
10! the data used in our analysis. We have chosea 150 by
inspection. The histogram of first-order differences ad thel

estimates are shown in Figurk 5.
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Fig. 4: A sample segment of the Cushing, OK WTI Spot Price
1% 10° 10° I 100 FOB data.

Fig. 3: MSE comparison of the estimators vs. the number of A visual inspection of the estimates in Figure 5 shows
measurements. that the/;-regularized LS €,,) and OMP @omp) estimates
consistently select specific time lags in the AR parameters,

tests appropriate for AR processes, namely, the K0|mog0rWhereaS the Yule-Walker and LS estimates Seemingly overfit
Smirnov (KS) test, the Cramér-von Mises (CvM) criteridmet the data by populating the entire parameter space. In order
spectral Cramér-von Mises (SCvM) test and the Andersoi® perform goodness-of-fit tests, we use an even/odd two-
Darling (AD) [37]-[39]. A summary of these tests is giverf0|d cross-validation. TableTlll shows the correspondiegtt

in Appendix[B. Table[ll summarizes the test statistics fatatistics, which reveal that indeed theregularized and OMP
different estimation methods. These tests are based on @$mates outperform the traditional estimation techesqu
known results on limiting distributions of error residuafss

noted from Tabld]l, our simulations suggest that the OMPABLE lIll: Goodness-of-fit tests for the crude oil price data
estimate achieves the best test statistics for the CvM, AdD an

. . . Test

KS tests, whereas thig-regularized estimate achieves the best Estimate CwW AD  KS SCvM
SCvM statistic. 0.5 0.88 5.55 0.055 0.046
Oy 0.58 3.60 0.043 0.037

B. Application to the analysis of crude oil prices Ot 0.27 133 0.031 S
_ _ _ ) _ Bomp 0.22 1.18 0.025 0.022
In this and the following subsection, we consider applica- Oty 0.28 140 0.027 0.021
tions with real-world data. As for the first application, we éywll’l 024 126 0.027 0.022
apply the sparse AR estimation techniques to analyze thecru B,momp 0.23 118 0.026 0.022

oil price of the Cushing, OK WTI Spot Price FOB dataset



IOOHiS‘Ogram of first-order differences Bomp Figure[®6 shows a typical average weekly speed and travel
0.05 ﬂ n A time in this dataset and the corresponding 25-75-th petesnt
50 o 0“5 As can be seen the data shows high variability around the
0 ol rush hours of 8am and 4pm. In our analysis, we used the first
4 2 50 2 4 Byt half of the data f = 1500) for fitting, from which the AR
0.1 r 0.02 o o L parameters and the distribution and variance of the infmavat
0 00(; were estimated. The statistical tests were designed based o
0,04 the estimated distributions, and the statistics were cdetpu
-0.1 -0.06 accordingly using the second half of the data. We selected an
o Oy Oy, order ofp = 200 by inspection and noting that the data seems
005 222 | ' n to have a periodicity of order70 samples.
0
20.05 0 0(21 V A segment of the log-centered data 06 aOMP
. . 6
—~ ~ 0.4
0&. eywOMP -1 02
0.06 0.0 A M .
0 ﬂ \ A A V 0 A 2 0 V A“ h
~0.06 -0.05 0 ELS éyw,fz.l
50 100 150 50 100 150 o4 0.3
. . . 0.2
Fig. 5: Estimates ob for the second-order differences of the: o1
oil price data. 0 0
0.6 Oy Ot
C. Application to the analysis of traffic data 04 04
0.2 0.2
Our second real data application concerns traffic speed data . 1o
The data used in our simulations is the INR®& speed data = ~
for 1-495 Maryland inner loop freeway (clockwise) between4 Oc, Oywomp
US-1/Baltimore Ave/Exit 25 and Greenbelt Metro Dr/Exit 24 04
from 1 Jul, 2015 to 31 Oct, 2015 [41], [42]. The reference, 02
speed of 65 mph is reported. Given the huge length of the | L . | |
0 'l

data and its high variability, the following pre-processinas
made on the original data:

50 100 150 200 50

100 150 200

Fig. 7: Estimates ob for the traffic speed data.

1) The data was downsampled by a factot @ind averaged
ibsy(:QShhl(;ng]r(;2r?ergpelgrt]?jsr?guocr?eltr?oiiuly variability, that FigurelT shows part of the data used in our analysis as well
: ) ) th timated ters. Th larized LS d
2) The logarithm of speed was used for analysis and t © estimated parameters. thaeguiarize @) an

S
mean was subtracted. This reduces the high variabil%\/‘
of speed due to rush hours and lower traffic durinﬁa
weekends and holidays.

s its largest components. The first lag

P (§0Mp) are consistent in selecting the same components
6. These estimators pick up two major lags around wiich

corresponds totabou

24 hours which is mainly due to the rush hour periodicity

on a daily basis. The second lag is arouridd — 170 hours

which corresponds to weekly changes in the speed due to

Travel Time (min)

lower traffic over the weekend. In contrast, the Yule-Walker
and LS estimates do not recover these significant time lags.

TABLE 1IV: Goodness-of-fit tests for the traffic speed data

Test

o Estimate CvM AD KS SCvM

I Oyw 0.012 0.066 0.220 0.05
0¢, 1.4%x10~7 2.1x10=% 6.7x10~* 0.25

9 Oomp 0.017 0.082 0.220 1.49

; Bywomp 0.025 0.122 0.270 0.14

w

Statistical tests for a selected subset of the estimaters ar
shown in Tabld_1V. Interestingly, thé; -regularized LS esti-
mator significantly outperforms the other estimators ire¢hr

) of the tests. The Yule-Walker estimator, however, achighres
. 6: A sample of the speed and travel time data for I-498.4t SCyM test statistic.

T T T T T T T 1

é

w

1
12AM 8§ AM 4 PM 11 PM



V. CONCLUSIONS (RE) condition. LefAmin(s), Amax(s)] be the smallest interval

In this paper, we have investigated sufficient samplirgPntaining the singular values (#(XSXS). where X5 is a
requirements for stable estimation of AR models in the nofUP-matrixX over an index set of size s.

asymptotic regime using thé;-regularized LS and greedy pefinition 1 (Restricted Eigenvalue ConditianA matrix X

estimation (OMP) techniques. We have further establishdsaid to satisfy the RE condition of ordefif Apin(s) > 0.
the minimax optimality of thel;-regularized LS estimator.

Compared to the existing literature, our results providesd ~ Although the RE condition only restrictdis(s), in the
major contributions. First, to the best of our knowledgde!lowing analysis we also keep track Ofma(s), which

our sufficient sampling bounds are the first of this kind i#PP€ars in some of the bounds. Establishing the RSCXfor
assessing the estimation performance of sparse AR mod¥i@ceeds in a sequence of lemmas (Lemas 1-5 culminating
in the non-asymptotic regime. Although -regularized LS N Lemma[®6). We first show that the RE condition holds for
and OMP are widely used in practice for AR estimation, tH& true covariance of an AR process:

choices of the regularization parameter and the number | Qfmma 1 (from [46]). Let R € R*** be thek x k covariance
greedy iterations, respectively, are often ad-hoc. In st matrix of a stationary process with power spectral density
our theor(_etlcal results prescribe gnalytlcal choices of tfg(w), and denote its maximum and minimum eigenvalues by
aforementioned parameters. In particular, our resultgesty Gmax(k) and dmin (k), respectively. Thenmax (k) is increas-

an improvement of orde©(p*/*s~") over those of [[25] ing in k, ¢ (k) is decreasing irk, and we have
which requiresn ~ O(p?) for stable AR estimation. Second,

our analysis relaxes the widely-assumed hypotheses df i.i. ~ @min(k)  inf S(w), and  @max(k) Tsup S(w).  (21)
covariates, which is clearly violated for AR estimation. To ) ) ¢
this end, our results extend those BfI[24] in establishirg tH NS result gives us the following corollary:
RIP for i.i.d. ToeplitZ matrices and [43] in eStainShin@th Coro”ary 1 (Singu|ar Value Spread QR) Under the suffi-

RE condition for correlated Gaussian designs, to the getfin cient stability assumption, the singular values of the cbva
AR estimation where the both the observations and covariatg, e p of an AR process lie in the interv %5 o
T

are obtained by the same stochastic process. Moreover, in T2 ]
the linear sparsity regime wherescales linearly withp, our Proof: For an ARp) process

results suggest an improvement of ordp'/?) to those of 1 o2

[24]. Third, we established the minimax optimality of the S(w) W

regularized LS estimator for compressible AR parameters. 2m |1 = 3 eI 2

We further verified the validity of our theoretical result€Combining||@|1< 1—n < 1 with Lemma_l proves the claim.
through simulation studies as well as application to real ]
financial and traffic data. These results show that the sparsélote that by Lemmal1, the result of Corolldry 1 not only
estimation methods significantly outperform the widelgdis holds for AR processes, but also fany stationary process
Yule-Walker based estimators in fitting AR models to the dataatisfyinginf,, S(w) > 0 andsup,, S(w) < oo, i.e., a process
Although we did not theoretically analyze the performante aith finite spectral spread.
sparse Yule-Walker based estimators, they seem to perform oWe next establish conditions for the RE condition to hold
par with the/;-regularized LS and OMP estimators based dior the empirical covarianc&:
our numerical studies. Finally, our results provide a stgk
connection to our recent work [44], [45] in estimating sjear
self-exciting discrete point process models. These mod
regress an observed binary spike train with respect to
history via Bernoulli or Poisson statistics, and are oftsedi
in describing spontaneous activity of sensory neurons. Our Proof: Let R = %(XTX). For everys,-sparse vectof
results have shown that in order to estimate a sparse histome have
dependence parameter vector of lengtand sparsitys in a ~
stable fashion, a spike train of length= O(s%/3p*/3 log p) is 07RO > 07RO —1]|0]1> (Amin — ts.)[|0]]5,

Lemma 2. If the singular values ofR lie in the interval
/I\é"i"’ Amax), thenX satisfies the RE condition of ordes, with
Rarameters\min(s*) = Amin — 8% @Nd Amax(Sx) = Amax + 8%,
W%eret = maxi,j|Rij — Rl]|

required. This leads us to conjecture that our results waildl h 0TRO < 6T RO + t1012< (Amax + £5.)]10]12,
for a larger class of autoregressive processes, beyone thos .
characterized by linear models. which proves the claim. ]

We will next show that can be suitably controlled with high
probability. Before doing so, we state a key result of Rusizki

APPENDIXA . . .
PROOFS OFTHEOREMST AND [ [47] regarding the concentration of second-order emgirica
sums from stationary processes:

A. The Restricted Strong Convexity of the matrix of covasiat _
The first element of the proofs of both Theorefs 1 aHuehm?a 3 f!_et %511 be samples of a stationary process
is to establish the Restricted Strong Convexity (RSC) fgfnich satisties

the matrix X of covariates formed from the observed data. T = Z bj_rw;, (22)
First, we investigate the closely related Restricted Bigkre JR—



wherewy's are i.i.d random variables with Definition 2 (Restricted Strong Convexity [31]) et

IE(lw;|*)|< (éow)Fk!, k=2,3,--, (23) V= {h € R?||hse|1< 3| hs|l1+405(0)}.  (30)
for some constant and Then, X is said to satisfy the RSC condition of ordeif there
oo exists a positive: > 0 such that
> Ibl< oo (24) 1 o 1 ) )
=00 —h* X" Xh = —||Xh|3> k|h|l3, VheV. (31)
n n
Then, the biased sample autocorrelation given by The RSC condition can be deduced from the RE condition
1 n+k according to the following result:
F Ttk = v Lemma 5 (lemma 4.1 of[[35]) If X satisfies the RE condition
o BRI of order s, = (m +1)s with a constant\nm;,((m + 1)s), then
satisfies the RSC condition of order holds with

t2(n+k) 2

P(|72 —r2|> t) < ¢1(n+k) exp (—;—2 ; ) , Amax(ms)
w 303 + 13/2y/n + /?25) K= Amin((m + 1)s) (1 -3 e ((m £ 1)S)> . (32)

for positive absolute constants;, c; and cs which are  \yo ¢on now establish the RSC condition of orddor X
independent of the dimensions of the problem and are only

functions of¢. Lemma 6. The matrix of covariatesX 2satisfies the RSC
Proof: The lemma is a special case of Theorem 4 undgf?d't'i’n of orders with a constants = g7 with probability
Condition 2 of Remark 3 in_[47]. as
Using the result of Lemmid 3, we can contt@nd establish ) /2
the RE condition forR as follows: 1 —c1p”(n+p)exp —W ; (33)
N (n 3/2
Lemma 4. Let m be a positive integer. Ther¥ satisfies the ()
RE condition of order(m + 1)s with a constant\n;, /2 with  \\herer — can and ¢/ = ca(16m(7240)%"2
probability at least T V1en(7240?) K ’
- Proof: Choosingm = [777—31, and using Lemmas] 2,
1— c1p(n + p) exp _637\/731) ’ (26) reflem:re2, andl5 establishes the result. ]
1+ (=) We are now ready prove Theorefds 1 &nd 2.
wherec, is the same as in Lemnia & = 52,/ 2@;“11) and B. Proof of Theorerfill
cy = 8oy We first establish the so-called vase condition for the error

Amin__\3/2"
(2<m+1>) vectorh = 6,, — 6:

Proof: First, note that for the given AR process, conditio o ;nma 7. For a choice of the regularization parametey, >
(22) is verified by the Wold decomposition of the ProCcessiy ¢(@)||l.o= 2||X7 (z7 — X0) ||, the optimal errorh _
condition [23) results from the sub-Gaussian assumption gn n ! ’

the innovations, and condition (24) results from the sigbil &, — 6 belongs to the vase
of the process. Noting that V= {h € R?|||hge|:1< 3||hs|1+405(0)}.  (34)

n ntk Proof: Using several instances of the triangle inequali
Riisr = y > wiltirk = y >, wmy = . k?za we have: ’ ’ ety
’ n =1 ’

1,j=1,j—i=k

1
@D 0= (o} - X(O0+h)[3—[at - X6J3) +

fori=1,---,nandk=0,---,p— 1, Eq. [25) implies:
Yo (16 + hl[1—16]]1)

~ Cor\/TN 1
P (1Reirs = Resinl> 7) Scrlnt Besp (‘m) > X" (2} — X6) |l ||hlli+
. (28) Yo (|05 + hse + hs + Ose[l1—0]1)

By the union bound and < p, we get: Tn

Jm 2 = (os(h) + [|hs[l)+

~ Con/TN
F (H}%X‘Rij - Ryl> ) = ap’(n+p)exp ( BIHCED +> 7o (185 + hselli~|hs + Osc[1~[10]])
(29  =-T(ou(h) + [hsl)+

Choosingr = 721‘"1)5 and invoking the result of Lemnid 2 Yu(10s]l1+0s(h) — ||hs|li—0s(0) — 05(0) — [|0s][1)
establishes the result of the lemma. [ | _ h(as(h) — 3|lhs||1—404(6)).

We next define the closely related notion of the Restricted 2
Strong Convexity (RSC): [ ]
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The following result of Negahban et al. |31] allows us thet dy be any positive integer. Choosing =

characterize the desired error bound: coo2y/T+ diy/ 1282 we get:
Lemma 8 (Theorem 1 of[[31]) If X satisfies the RSC condi-
tion of orders with a constants > 0 and,, > [[V£(0)|[o, P((IVeO)|. > coo2/1+ds log p < 2 .
then any optimal solutio@,, satisfies > n nds
~ 2/ 29n,0(0 i _ [logp \nsi o 2
18y, — 8]2< /5 i Yns( )_ ) He_nc_e, a choice of, dg. = Wlth. do := cooiV/'1 +da,
K k satisfiesy, > |[|V£(0)||~ with probability at least — 2. Let
In order to use Lemma&l8, we need to contrgl = d; = (2¢,)%/%. Using Lemm4p, the fact that > d;sp>/® by
[VL£(0)| . We have: hypothesis, angh > n we have that the RSC of orderr}old
2 1/3
2 7 m for x = Tz with a probability at least —2¢p? exp(—“5—).
Vo) = gX («f - X8), (35)  Combined these two assertions, the claim of Theorem 1

It is easy to check that by the uncorrelatedness of the innoY@lows for ds = 32mcov/1 + dy.

tions wy’s, we have

9 . 9 . C. Proof of Theorerq]2

E[VE®)] = ﬁE (X" (y = X0)] = ﬁE [X"wi] = 0. The proof is mainly based on the following lemma, adopted
(36)  from Theorem 2.1 of [33], stating that the greedy procedsire i

Eq. (38) is known as the orthogonality principle. We next8hos,ccessful in obtaining a reasonabtesparse approximation,
that V£(0) is concentrated around its mean. We can write if the cost function satisfies the RSC:

(VL£()), = gx”fj_?w? Lemma 10. Let s* be a constant such that
4 n i )
N s os
and observe that thgth element in this expansion is of the st 2 7 log pog (39)

form y; = xp_i—jr1wWn—j41. It is easy to check that the

sequence? is a martingale with respect to the filtration giverNd suppose that’(6) satisfies RSC of ordes™ with a
by constants > 0. Then, we have

n—j+1
Fimo (a). [osia —0s], = Lo
5 =

K

where o (-) denote the sigma-field generated by the randorr}1 -
. . wheren,- satisfies

variablesz_,41,2_p42, -+, Zn—j+1. We use the following

concentration result for sums of dependent random vasable £or S V5* 4+ 5||VE(Os)| - (40)

[48]: Proof: The proof is a specialization of the proof of
Lemma 9. Fix n > 1. Let Z;’s be sub-GaussianF;- Theorem 2.1 in[[33] to our setting with the spectral spread
measurable random variables, satisfying for eagh = 1/452 [ |
1,2,---,n, In order to use Lemmna10, we need to bouindL(0s)||o-

E[Z;|F;j—1] =0, almost surely We have:

_ 1 T(,.n _ 1 T
then there exists a constaatsuch that for allz > 0, E[VE®s)] = EE [XT (a1 - X60s)] = E]E [XTX(0—65)]
2
0,
n 2 :R(G_es) S =~ <s(0)17
P 1223- ~E[Zj]| >t | <exp (—%) 2
"im ¢ where in the second inequality we have used (36), and the

st inequality results from Corollafy 1. Léf be any positive
teger. Using the result of Lemnia 9 together with the union
ound vyields:

Proof: This is a special case of Theorem 3.2 bfl[48]
or Lemma 3.2 of[[49], for sub-Gaussian-weighted sums
random variables. The constanilepends on the sub-Gaussia

constant ofZ;’s. [ | lo 2.(0
; gp , owss(6) 2
Sincey;’s are a product of two independent sub-Gaussi%g(”Vﬂ(@S)HooZ coom/1+ d) —+ < =

2mn? n

random variables, they are sub-Gaussian as well. Lefdma 7
implies that Hence, we get the following concentration result fgr:

nt? 2 - [logp  0ass(0)

P(|VL(0):|>t) < exp =7 ) B7)  Pleg >Vs*+s|cooi/1+d, + 53

0%w n ™
wherec := % is an absolute constant. By the union bound, i (41)
we get: " ~ nd

2, Noting that by [3P) we have* + s < 1% Let d; =

P( IVE(®)leo 2 t) = e <_c§a§v +1ng) - (38) 4(2¢])%/3. By the hypothesis of,(6) < As'"t for some
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constant4, and invoking the results of Lemm@s 6 dnd 10, wethere H; denotes the hypothesis thatis the true parameter,

get: and induces the probability measuPé.|H ).
P slog slo Consider a clasg of AR processes with-sparse parame-
He(()M)P - 03H2 < d \/ % +dy/slog s¢,(0) ters over any subset C {1,2,---, p} satisfying|S|= s, with
_ \/M z \/@ parameters given by
-2 n st—3 00 = £e ™1g(0), (43)
whered, — 16meoy/24(14d}) oo &y = A with probab|l|ty where m remains to_ be chosen. We also add the all zero
™ vectorf to Z. For a fixedS, we have2® + 1 such parameters
at leastl — 2¢;p® exp(—“5—) — nig Z ndi- We  forming a subfamilyZs. Consider the maximal collection of
have: (") subsetsS for which any two subsets differ in at least
Ha(s*) H _ Ho(s ) 0ot e— GH s/4 |nd|ce_s. The_ size of this collection can be identified by
oMP omp — VS TS 2 A(p,2,s) in coding theory, whered(n, d,w) represents the
< HO(()SM)P _ OSH + (|65 — 0] maximum size of a binary code of length with minimum
2 distanced and constant weight) [50]. We have
Choosingd}; = 2dj completes the proof. Te 1
s p®
A(p, 1 S) > sl
D. Proof of Propositior L for large enoughp (See Theorem 6 in[51]). Also, by the
Consider the event defined by Gilbert-Varshamov bound [50], there exists a subfargily C
Zg, of cardinality| 2%|> 2L*/8] + 1, such that any two distinct
A= {maxu%j — Ri;|< 7—}. 0.,0, c Zj differ at least ins/16 components. Thus for
©J 01,0, € 2* = JZ%, we have
Eqg. (29) in the proof of Lemmal 4 implies that: s
1
0, — 05|2> —v/se™™ =: q, 44
P(AY) < c1p?(n + p) exp (_ e ) | 161 — 622> $v/5 (44)
/2372 T Ow

and|Z*|> ”8 215/8]_ For an arbltrary estimat@, consider

By choosingr as in the proof of Theorem 1, we have the testing problem between ti’ii "ols/8] hypotheses, :

RZ, (Ominimax) < R2,(0y,) = sup (]E {Hefl _ GH%D 0 = 0; ¢ Z*, using the mlnlmum dlstance decoding strategy.
H Usmg Markovs inequality we have
slogp ~ ~ ~
P(A)d5—== + sup B4 [Ileel - 0||§] supE [||0 - 0||2] > supE [He - 0||2]
H Z Z*
lo ~
< 32%8P > ZsupP (1|6 - 0]2> 5)
2 z» 2
> (8] ~
+8(1 — n)%cy exp <— cw;;ﬂz'n + 3108;1)) ) ) su_pP (0 # 0j|HJ') : (45)
;.372 3/2 Ow

where the second inequality follows from Theoréin 1, arleet fo, denote joint probability distribution ofz};_, con-
the third inequality follows from the fact thdid,, — @])2< ditioned on{z}? ., under the hypothesidi;. Using the
4(1 — )% by the sufficient stability assumption. For > Gaussian assumption on the innovations,ifet j, we have

d1sp?/3, the first term will be the dominant, and thus we get < supE |1 fa
Rest (Bminimax) < 2d31/ “%22. for large enough. ki follfo;) bip 08 ij

As for a lower bound onRest(Bm,n.max) we take the o Lo
approach of[[2b] by constructing a family of AR processeé SQPE 202 ; ((Ik — Oy p) - (mk —0; Ik p) ) ’HZ

with sparse parametefisfor which the minimax risk is optimal n
modulo constants. In our construction, we assume that thesup —IE [((Oi —0;) i 1) ’HZ}

T
innovations are Gaussian. The key element of the proof is the #J %0 o
Fano’s inequality: = 2” sup(@; — 0;)'R(6; — ;)
O'W i#j
Lemma 11 (Fano’s Inequality) Let Z be a class of densities A ! se—2m
max

with a subclassZ* of densitiesfe,, parameterized by;, for < ——=su p||0 0; HQ_
i € {0,---,2™}. Suppose that for any two distingt, 8, < 20, G
Z*, DkL(fe, ||fo,) < B for some constant. Let & be an  Using Lemmdlll,[@4)[@5) anf (46) yield:
estimate of the parameters. Then 5 (

B +log?2 supE{”é\—OHQ} > Ve ™
M z 8

=:f. (46)

n634€ 772 —+ log 2)
slogp

supP(8 + 6,|H;) > 1 — (42)
J
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for p large enough so thdbgp > l‘)L

Llog (*) gives us the claim ng Propositidh 1 with= The aforementioned KS, CvM and AD tests all depend on
2 8mn? log p e a - - - .
(256). the distribution of the innovations. For Gaussian AR preess

the spectral versions of these tests are introduced in T3@&se
The hypothesis ok < \/——’%, /1og5 Quarantees that for all tests are based on the similarities of the periodogram of the
0 € Z*, we have||f|,< 1 — 1. data and the estimated power-spectral density of the psoces
The key idea is summarized in the following lemma:

Choosingm = B. Spectral domain tests for Gaussian AR processes

APPENDIX B )
STATISTICAL TESTS FORGOODNESSOF-FIT Lgmma 12: LetS(w) be the (_normallzed) power-spectral den-
ity of stationary process with bounded spectral spread, an

In this appendix, we will give an overview of the statistica% (w) be the periodogram of the samples of a realization
goodness-of-fit tests for assessing the accuracy of the %Fesuch a process, then for all we have:

model estimates. A detailed treatment can be found_inh [52]. .
I d.
A. Residue-based tests v <2/0 (Sn()‘) - S()\)) d/\) — Z(w), (47)

Let 6 be an estimate of the parameters of the process. TjRere Z(w) is a zero-mean Gaussian process.

residues (estimated innovations) of the process basédara o ] . s
given by The explicit formula for the covariance function &f(.) is

~ , calculated in[[39]. Lemmia_12 suggests that for a good estimat
er = — 0, =120 6 which admits a power spectral densiyw; ), one should
The main idea behind most of the available statistical testét a €loseto) Gaussian process replacigw) with S(w; 6)
is to quantify how close the sequenge;}?_, is to an i.i.d. in (47). The spectral form of the CvM, KS and AD statistics
realization of a known distributiod, which is most likely can thus be characterized given an estintate
absolutely continuous . Let us denote the empirical distitin
of then-samples b)Fn If the samples are generated frdip ACKNOWLEDGMENT
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